MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  selberg3 Structured version   Unicode version

Theorem selberg3 23465
Description: Introduce a log weighting on the summands of  sum_ m  x.  n  <_  x , Λ ( m )Λ ( n ), the core of selberg2 23457 (written here as  sum_ n  <_  x , Λ ( n )ψ (
x  /  n )). Equation 10.6.7 of [Shapiro], p. 422. (Contributed by Mario Carneiro, 30-May-2016.)
Assertion
Ref Expression
selberg3  |-  ( x  e.  ( 1 (,) +oo )  |->  ( ( ( ( (ψ `  x )  x.  ( log `  x ) )  +  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )  e.  O(1)
Distinct variable group:    x, n

Proof of Theorem selberg3
StepHypRef Expression
1 elioore 11548 . . . . . . . . . . . . . 14  |-  ( x  e.  ( 1 (,) +oo )  ->  x  e.  RR )
21adantl 466 . . . . . . . . . . . . 13  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  x  e.  RR )
3 chpcl 23119 . . . . . . . . . . . . 13  |-  ( x  e.  RR  ->  (ψ `  x )  e.  RR )
42, 3syl 16 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (ψ `  x )  e.  RR )
5 1rp 11213 . . . . . . . . . . . . . . 15  |-  1  e.  RR+
65a1i 11 . . . . . . . . . . . . . 14  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  1  e.  RR+ )
7 1red 9600 . . . . . . . . . . . . . . 15  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  1  e.  RR )
8 eliooord 11573 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( 1 (,) +oo )  ->  ( 1  <  x  /\  x  < +oo ) )
98adantl 466 . . . . . . . . . . . . . . . 16  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
1  <  x  /\  x  < +oo ) )
109simpld 459 . . . . . . . . . . . . . . 15  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  1  <  x )
117, 2, 10ltled 9721 . . . . . . . . . . . . . 14  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  1  <_  x )
122, 6, 11rpgecld 11280 . . . . . . . . . . . . 13  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  x  e.  RR+ )
1312relogcld 22729 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( log `  x )  e.  RR )
144, 13remulcld 9613 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
(ψ `  x )  x.  ( log `  x
) )  e.  RR )
1514recnd 9611 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
(ψ `  x )  x.  ( log `  x
) )  e.  CC )
16 fzfid 12039 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
1 ... ( |_ `  x ) )  e. 
Fin )
17 elfznn 11703 . . . . . . . . . . . . . . 15  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  NN )
1817adantl 466 . . . . . . . . . . . . . 14  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
19 vmacl 23113 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  (Λ `  n )  e.  RR )
2018, 19syl 16 . . . . . . . . . . . . 13  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  n
)  e.  RR )
212adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  RR )
2221, 18nndivred 10573 . . . . . . . . . . . . . 14  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR )
23 chpcl 23119 . . . . . . . . . . . . . 14  |-  ( ( x  /  n )  e.  RR  ->  (ψ `  ( x  /  n
) )  e.  RR )
2422, 23syl 16 . . . . . . . . . . . . 13  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (ψ `  (
x  /  n ) )  e.  RR )
2520, 24remulcld 9613 . . . . . . . . . . . 12  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  (ψ `  ( x  /  n
) ) )  e.  RR )
2616, 25fsumrecl 13505 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  e.  RR )
2726recnd 9611 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  e.  CC )
28 2re 10594 . . . . . . . . . . . . . . 15  |-  2  e.  RR
2928a1i 11 . . . . . . . . . . . . . 14  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  2  e.  RR )
302, 10rplogcld 22735 . . . . . . . . . . . . . 14  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( log `  x )  e.  RR+ )
3129, 30rerpdivcld 11272 . . . . . . . . . . . . 13  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
2  /  ( log `  x ) )  e.  RR )
3218nnrpd 11244 . . . . . . . . . . . . . . . 16  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  RR+ )
3332relogcld 22729 . . . . . . . . . . . . . . 15  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  n )  e.  RR )
3425, 33remulcld 9613 . . . . . . . . . . . . . 14  |-  ( ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) )  e.  RR )
3516, 34fsumrecl 13505 . . . . . . . . . . . . 13  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) )  e.  RR )
3631, 35remulcld 9613 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) ) )  e.  RR )
3736, 26resubcld 9976 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) )  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) ) )  e.  RR )
3837recnd 9611 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) )  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) ) )  e.  CC )
3915, 27, 38addassd 9607 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( (ψ `  x )  x.  ( log `  x ) )  +  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) ) )  +  ( ( ( 2  /  ( log `  x ) )  x. 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) ) )  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) ) ) )  =  ( ( (ψ `  x
)  x.  ( log `  x ) )  +  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  +  ( ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) )  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) ) ) ) ) )
40 2cnd 10597 . . . . . . . . . . . . 13  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  2  e.  CC )
4113recnd 9611 . . . . . . . . . . . . 13  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( log `  x )  e.  CC )
4230rpne0d 11250 . . . . . . . . . . . . 13  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( log `  x )  =/=  0 )
4340, 41, 42divcld 10309 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
2  /  ( log `  x ) )  e.  CC )
4435recnd 9611 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) )  e.  CC )
4543, 44mulcld 9605 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) ) )  e.  CC )
4627, 45pncan3d 9922 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  +  ( ( ( 2  /  ( log `  x ) )  x. 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) ) )  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) ) ) )  =  ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) ) ) )
4746oveq2d 6291 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( (ψ `  x
)  x.  ( log `  x ) )  +  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  +  ( ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) )  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) ) ) ) )  =  ( ( (ψ `  x )  x.  ( log `  x ) )  +  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) ) )
4839, 47eqtr2d 2502 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( (ψ `  x
)  x.  ( log `  x ) )  +  ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  =  ( ( ( (ψ `  x )  x.  ( log `  x
) )  +  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n
) ) ) )  +  ( ( ( 2  /  ( log `  x ) )  x. 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) ) )  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) ) ) ) )
4948oveq1d 6290 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( (ψ `  x )  x.  ( log `  x ) )  +  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  =  ( ( ( ( (ψ `  x )  x.  ( log `  x
) )  +  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n
) ) ) )  +  ( ( ( 2  /  ( log `  x ) )  x. 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) ) )  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) ) ) )  /  x
) )
5014, 26readdcld 9612 . . . . . . . . 9  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( (ψ `  x
)  x.  ( log `  x ) )  + 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) ) )  e.  RR )
5150recnd 9611 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( (ψ `  x
)  x.  ( log `  x ) )  + 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) ) )  e.  CC )
522recnd 9611 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  x  e.  CC )
5312rpne0d 11250 . . . . . . . 8  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  x  =/=  0 )
5451, 38, 52, 53divdird 10347 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( (ψ `  x )  x.  ( log `  x ) )  +  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) ) )  +  ( ( ( 2  /  ( log `  x ) )  x. 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) ) )  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) ) ) )  /  x
)  =  ( ( ( ( (ψ `  x )  x.  ( log `  x ) )  +  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) ) )  /  x )  +  ( ( ( ( 2  /  ( log `  x ) )  x. 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) ) )  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) ) )  /  x ) ) )
5549, 54eqtrd 2501 . . . . . 6  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( (ψ `  x )  x.  ( log `  x ) )  +  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  =  ( ( ( ( (ψ `  x )  x.  ( log `  x
) )  +  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n
) ) ) )  /  x )  +  ( ( ( ( 2  /  ( log `  x ) )  x. 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) ) )  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) ) )  /  x ) ) )
5655oveq1d 6290 . . . . 5  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( (ψ `  x )  x.  ( log `  x ) )  +  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) )  =  ( ( ( ( ( (ψ `  x )  x.  ( log `  x ) )  +  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) ) )  /  x )  +  ( ( ( ( 2  /  ( log `  x ) )  x. 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) ) )  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) ) )  /  x ) )  -  ( 2  x.  ( log `  x
) ) ) )
5750, 12rerpdivcld 11272 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( (ψ `  x )  x.  ( log `  x ) )  +  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) ) )  /  x )  e.  RR )
5857recnd 9611 . . . . . 6  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( (ψ `  x )  x.  ( log `  x ) )  +  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) ) )  /  x )  e.  CC )
5937, 12rerpdivcld 11272 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) )  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) ) )  /  x )  e.  RR )
6059recnd 9611 . . . . . 6  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) )  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) ) )  /  x )  e.  CC )
6129, 13remulcld 9613 . . . . . . 7  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
2  x.  ( log `  x ) )  e.  RR )
6261recnd 9611 . . . . . 6  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
2  x.  ( log `  x ) )  e.  CC )
6358, 60, 62addsubd 9940 . . . . 5  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( ( (ψ `  x )  x.  ( log `  x
) )  +  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n
) ) ) )  /  x )  +  ( ( ( ( 2  /  ( log `  x ) )  x. 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) ) )  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) ) )  /  x ) )  -  ( 2  x.  ( log `  x
) ) )  =  ( ( ( ( ( (ψ `  x
)  x.  ( log `  x ) )  + 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) ) )  /  x )  -  ( 2  x.  ( log `  x
) ) )  +  ( ( ( ( 2  /  ( log `  x ) )  x. 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) ) )  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) ) )  /  x ) ) )
6456, 63eqtrd 2501 . . . 4  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( (ψ `  x )  x.  ( log `  x ) )  +  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) )  =  ( ( ( ( ( (ψ `  x )  x.  ( log `  x ) )  +  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) )  +  ( ( ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) )  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) ) )  /  x ) ) )
6564mpteq2dva 4526 . . 3  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  |->  ( ( ( ( (ψ `  x )  x.  ( log `  x
) )  +  ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )  =  ( x  e.  ( 1 (,) +oo )  |->  ( ( ( ( ( (ψ `  x )  x.  ( log `  x
) )  +  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) )  +  ( ( ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) )  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) ) )  /  x ) ) ) )
6657, 61resubcld 9976 . . . 4  |-  ( ( T.  /\  x  e.  ( 1 (,) +oo ) )  ->  (
( ( ( (ψ `  x )  x.  ( log `  x ) )  +  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) )  e.  RR )
6712ex 434 . . . . . 6  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  ->  x  e.  RR+ )
)
6867ssrdv 3503 . . . . 5  |-  ( T. 
->  ( 1 (,) +oo )  C_  RR+ )
69 selberg2 23457 . . . . . 6  |-  ( x  e.  RR+  |->  ( ( ( ( (ψ `  x )  x.  ( log `  x ) )  +  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )  e.  O(1)
7069a1i 11 . . . . 5  |-  ( T. 
->  ( x  e.  RR+  |->  ( ( ( ( (ψ `  x )  x.  ( log `  x
) )  +  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )  e.  O(1) )
7168, 70o1res2 13335 . . . 4  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  |->  ( ( ( ( (ψ `  x )  x.  ( log `  x
) )  +  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )  e.  O(1) )
72 selberg3lem2 23464 . . . . 5  |-  ( x  e.  ( 1 (,) +oo )  |->  ( ( ( ( 2  / 
( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) )  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) ) )  /  x ) )  e.  O(1)
7372a1i 11 . . . 4  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  |->  ( ( ( ( 2  /  ( log `  x ) )  x. 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) ) )  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) ) )  /  x ) )  e.  O(1) )
7466, 59, 71, 73o1add2 13395 . . 3  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  |->  ( ( ( ( ( (ψ `  x
)  x.  ( log `  x ) )  + 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) ) )  /  x )  -  ( 2  x.  ( log `  x
) ) )  +  ( ( ( ( 2  /  ( log `  x ) )  x. 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) ) )  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) ) )  /  x ) ) )  e.  O(1) )
7565, 74eqeltrd 2548 . 2  |-  ( T. 
->  ( x  e.  ( 1 (,) +oo )  |->  ( ( ( ( (ψ `  x )  x.  ( log `  x
) )  +  ( ( 2  /  ( log `  x ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  x.  ( log `  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )  e.  O(1) )
7675trud 1383 1  |-  ( x  e.  ( 1 (,) +oo )  |->  ( ( ( ( (ψ `  x )  x.  ( log `  x ) )  +  ( ( 2  /  ( log `  x
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( (Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  x.  ( log `  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )  e.  O(1)
Colors of variables: wff setvar class
Syntax hints:    /\ wa 369   T. wtru 1375    e. wcel 1762   class class class wbr 4440    |-> cmpt 4498   ` cfv 5579  (class class class)co 6275   RRcr 9480   1c1 9482    + caddc 9484    x. cmul 9486   +oocpnf 9614    < clt 9617    - cmin 9794    / cdiv 10195   NNcn 10525   2c2 10574   RR+crp 11209   (,)cioo 11518   ...cfz 11661   |_cfl 11884   O(1)co1 13258   sum_csu 13457   logclog 22663  Λcvma 23086  ψcchp 23087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-inf2 8047  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559  ax-addf 9560  ax-mulf 9561
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-fal 1380  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-int 4276  df-iun 4320  df-iin 4321  df-disj 4411  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-se 4832  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-isom 5588  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-of 6515  df-om 6672  df-1st 6774  df-2nd 6775  df-supp 6892  df-recs 7032  df-rdg 7066  df-1o 7120  df-2o 7121  df-oadd 7124  df-er 7301  df-map 7412  df-pm 7413  df-ixp 7460  df-en 7507  df-dom 7508  df-sdom 7509  df-fin 7510  df-fsupp 7819  df-fi 7860  df-sup 7890  df-oi 7924  df-card 8309  df-cda 8537  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-div 10196  df-nn 10526  df-2 10583  df-3 10584  df-4 10585  df-5 10586  df-6 10587  df-7 10588  df-8 10589  df-9 10590  df-10 10591  df-n0 10785  df-z 10854  df-dec 10966  df-uz 11072  df-q 11172  df-rp 11210  df-xneg 11307  df-xadd 11308  df-xmul 11309  df-ioo 11522  df-ioc 11523  df-ico 11524  df-icc 11525  df-fz 11662  df-fzo 11782  df-fl 11886  df-mod 11953  df-seq 12064  df-exp 12123  df-fac 12309  df-bc 12336  df-hash 12361  df-shft 12850  df-cj 12882  df-re 12883  df-im 12884  df-sqr 13018  df-abs 13019  df-limsup 13243  df-clim 13260  df-rlim 13261  df-o1 13262  df-lo1 13263  df-sum 13458  df-ef 13654  df-e 13655  df-sin 13656  df-cos 13657  df-pi 13659  df-dvds 13837  df-gcd 13993  df-prm 14066  df-pc 14209  df-struct 14481  df-ndx 14482  df-slot 14483  df-base 14484  df-sets 14485  df-ress 14486  df-plusg 14557  df-mulr 14558  df-starv 14559  df-sca 14560  df-vsca 14561  df-ip 14562  df-tset 14563  df-ple 14564  df-ds 14566  df-unif 14567  df-hom 14568  df-cco 14569  df-rest 14667  df-topn 14668  df-0g 14686  df-gsum 14687  df-topgen 14688  df-pt 14689  df-prds 14692  df-xrs 14746  df-qtop 14751  df-imas 14752  df-xps 14754  df-mre 14830  df-mrc 14831  df-acs 14833  df-mnd 15721  df-submnd 15771  df-mulg 15854  df-cntz 16143  df-cmn 16589  df-psmet 18175  df-xmet 18176  df-met 18177  df-bl 18178  df-mopn 18179  df-fbas 18180  df-fg 18181  df-cnfld 18185  df-top 19159  df-bases 19161  df-topon 19162  df-topsp 19163  df-cld 19279  df-ntr 19280  df-cls 19281  df-nei 19358  df-lp 19396  df-perf 19397  df-cn 19487  df-cnp 19488  df-haus 19575  df-cmp 19646  df-tx 19791  df-hmeo 19984  df-fil 20075  df-fm 20167  df-flim 20168  df-flf 20169  df-xms 20551  df-ms 20552  df-tms 20553  df-cncf 21110  df-limc 21998  df-dv 21999  df-log 22665  df-cxp 22666  df-em 23043  df-cht 23091  df-vma 23092  df-chp 23093  df-ppi 23094  df-mu 23095
This theorem is referenced by:  selberg3r  23475
  Copyright terms: Public domain W3C validator