MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  selberg2lem Structured version   Unicode version

Theorem selberg2lem 23491
Description: Lemma for selberg2 23492. Equation 10.4.12 of [Shapiro], p. 420. (Contributed by Mario Carneiro, 23-May-2016.)
Assertion
Ref Expression
selberg2lem  |-  ( x  e.  RR+  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( log `  n
) )  -  (
(ψ `  x )  x.  ( log `  x
) ) )  /  x ) )  e.  O(1)
Distinct variable group:    x, n

Proof of Theorem selberg2lem
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 rpre 11226 . . . . . . . . 9  |-  ( x  e.  RR+  ->  x  e.  RR )
2 chpcl 23154 . . . . . . . . 9  |-  ( x  e.  RR  ->  (ψ `  x )  e.  RR )
31, 2syl 16 . . . . . . . 8  |-  ( x  e.  RR+  ->  (ψ `  x )  e.  RR )
43recnd 9622 . . . . . . 7  |-  ( x  e.  RR+  ->  (ψ `  x )  e.  CC )
5 rprege0 11234 . . . . . . . . . . . . 13  |-  ( x  e.  RR+  ->  ( x  e.  RR  /\  0  <_  x ) )
6 flge0nn0 11922 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR  /\  0  <_  x )  -> 
( |_ `  x
)  e.  NN0 )
75, 6syl 16 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  ( |_
`  x )  e. 
NN0 )
8 nn0p1nn 10835 . . . . . . . . . . . 12  |-  ( ( |_ `  x )  e.  NN0  ->  ( ( |_ `  x )  +  1 )  e.  NN )
97, 8syl 16 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( ( |_ `  x )  +  1 )  e.  NN )
109nnrpd 11255 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( ( |_ `  x )  +  1 )  e.  RR+ )
1110relogcld 22764 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( log `  ( ( |_ `  x )  +  1 ) )  e.  RR )
1211recnd 9622 . . . . . . . 8  |-  ( x  e.  RR+  ->  ( log `  ( ( |_ `  x )  +  1 ) )  e.  CC )
13 relogcl 22719 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( log `  x )  e.  RR )
1413recnd 9622 . . . . . . . 8  |-  ( x  e.  RR+  ->  ( log `  x )  e.  CC )
1512, 14subcld 9930 . . . . . . 7  |-  ( x  e.  RR+  ->  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x
) )  e.  CC )
164, 15mulcld 9616 . . . . . 6  |-  ( x  e.  RR+  ->  ( (ψ `  x )  x.  (
( log `  (
( |_ `  x
)  +  1 ) )  -  ( log `  x ) ) )  e.  CC )
17 fzfid 12051 . . . . . . 7  |-  ( x  e.  RR+  ->  ( 1 ... ( |_ `  x ) )  e. 
Fin )
18 elfznn 11714 . . . . . . . . . 10  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  NN )
1918adantl 466 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
2019nnrpd 11255 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  RR+ )
21 1rp 11224 . . . . . . . . . . . . 13  |-  1  e.  RR+
22 rpaddcl 11240 . . . . . . . . . . . . 13  |-  ( ( n  e.  RR+  /\  1  e.  RR+ )  ->  (
n  +  1 )  e.  RR+ )
2321, 22mpan2 671 . . . . . . . . . . . 12  |-  ( n  e.  RR+  ->  ( n  +  1 )  e.  RR+ )
2423relogcld 22764 . . . . . . . . . . 11  |-  ( n  e.  RR+  ->  ( log `  ( n  +  1 ) )  e.  RR )
25 relogcl 22719 . . . . . . . . . . 11  |-  ( n  e.  RR+  ->  ( log `  n )  e.  RR )
2624, 25resubcld 9987 . . . . . . . . . 10  |-  ( n  e.  RR+  ->  ( ( log `  ( n  +  1 ) )  -  ( log `  n
) )  e.  RR )
27 rpre 11226 . . . . . . . . . . 11  |-  ( n  e.  RR+  ->  n  e.  RR )
28 chpcl 23154 . . . . . . . . . . 11  |-  ( n  e.  RR  ->  (ψ `  n )  e.  RR )
2927, 28syl 16 . . . . . . . . . 10  |-  ( n  e.  RR+  ->  (ψ `  n )  e.  RR )
3026, 29remulcld 9624 . . . . . . . . 9  |-  ( n  e.  RR+  ->  ( ( ( log `  (
n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n )
)  e.  RR )
3130recnd 9622 . . . . . . . 8  |-  ( n  e.  RR+  ->  ( ( ( log `  (
n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n )
)  e.  CC )
3220, 31syl 16 . . . . . . 7  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( log `  (
n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n )
)  e.  CC )
3317, 32fsumcl 13518 . . . . . 6  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( log `  ( n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n
) )  e.  CC )
34 rpcnne0 11237 . . . . . 6  |-  ( x  e.  RR+  ->  ( x  e.  CC  /\  x  =/=  0 ) )
35 divsubdir 10240 . . . . . 6  |-  ( ( ( (ψ `  x
)  x.  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x
) ) )  e.  CC  /\  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( log `  ( n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n
) )  e.  CC  /\  ( x  e.  CC  /\  x  =/=  0 ) )  ->  ( (
( (ψ `  x
)  x.  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x
) ) )  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( log `  (
n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n )
) )  /  x
)  =  ( ( ( (ψ `  x
)  x.  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x
) ) )  /  x )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( log `  (
n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n )
)  /  x ) ) )
3616, 33, 34, 35syl3anc 1228 . . . . 5  |-  ( x  e.  RR+  ->  ( ( ( (ψ `  x
)  x.  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x
) ) )  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( log `  (
n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n )
) )  /  x
)  =  ( ( ( (ψ `  x
)  x.  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x
) ) )  /  x )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( log `  (
n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n )
)  /  x ) ) )
374, 12mulcld 9616 . . . . . . . 8  |-  ( x  e.  RR+  ->  ( (ψ `  x )  x.  ( log `  ( ( |_
`  x )  +  1 ) ) )  e.  CC )
384, 14mulcld 9616 . . . . . . . 8  |-  ( x  e.  RR+  ->  ( (ψ `  x )  x.  ( log `  x ) )  e.  CC )
3937, 38, 33sub32d 9962 . . . . . . 7  |-  ( x  e.  RR+  ->  ( ( ( (ψ `  x
)  x.  ( log `  ( ( |_ `  x )  +  1 ) ) )  -  ( (ψ `  x )  x.  ( log `  x
) ) )  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( log `  (
n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n )
) )  =  ( ( ( (ψ `  x )  x.  ( log `  ( ( |_
`  x )  +  1 ) ) )  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( log `  ( n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n
) ) )  -  ( (ψ `  x )  x.  ( log `  x
) ) ) )
404, 12, 14subdid 10012 . . . . . . . 8  |-  ( x  e.  RR+  ->  ( (ψ `  x )  x.  (
( log `  (
( |_ `  x
)  +  1 ) )  -  ( log `  x ) ) )  =  ( ( (ψ `  x )  x.  ( log `  ( ( |_
`  x )  +  1 ) ) )  -  ( (ψ `  x )  x.  ( log `  x ) ) ) )
4140oveq1d 6299 . . . . . . 7  |-  ( x  e.  RR+  ->  ( ( (ψ `  x )  x.  ( ( log `  (
( |_ `  x
)  +  1 ) )  -  ( log `  x ) ) )  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( log `  ( n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n
) ) )  =  ( ( ( (ψ `  x )  x.  ( log `  ( ( |_
`  x )  +  1 ) ) )  -  ( (ψ `  x )  x.  ( log `  x ) ) )  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( log `  ( n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n
) ) ) )
42 fveq2 5866 . . . . . . . . . . 11  |-  ( m  =  n  ->  ( log `  m )  =  ( log `  n
) )
43 oveq1 6291 . . . . . . . . . . . 12  |-  ( m  =  n  ->  (
m  -  1 )  =  ( n  - 
1 ) )
4443fveq2d 5870 . . . . . . . . . . 11  |-  ( m  =  n  ->  (ψ `  ( m  -  1 ) )  =  (ψ `  ( n  -  1 ) ) )
4542, 44jca 532 . . . . . . . . . 10  |-  ( m  =  n  ->  (
( log `  m
)  =  ( log `  n )  /\  (ψ `  ( m  -  1 ) )  =  (ψ `  ( n  -  1 ) ) ) )
46 fveq2 5866 . . . . . . . . . . 11  |-  ( m  =  ( n  + 
1 )  ->  ( log `  m )  =  ( log `  (
n  +  1 ) ) )
47 oveq1 6291 . . . . . . . . . . . 12  |-  ( m  =  ( n  + 
1 )  ->  (
m  -  1 )  =  ( ( n  +  1 )  - 
1 ) )
4847fveq2d 5870 . . . . . . . . . . 11  |-  ( m  =  ( n  + 
1 )  ->  (ψ `  ( m  -  1 ) )  =  (ψ `  ( ( n  + 
1 )  -  1 ) ) )
4946, 48jca 532 . . . . . . . . . 10  |-  ( m  =  ( n  + 
1 )  ->  (
( log `  m
)  =  ( log `  ( n  +  1 ) )  /\  (ψ `  ( m  -  1 ) )  =  (ψ `  ( ( n  + 
1 )  -  1 ) ) ) )
50 fveq2 5866 . . . . . . . . . . . 12  |-  ( m  =  1  ->  ( log `  m )  =  ( log `  1
) )
51 log1 22726 . . . . . . . . . . . 12  |-  ( log `  1 )  =  0
5250, 51syl6eq 2524 . . . . . . . . . . 11  |-  ( m  =  1  ->  ( log `  m )  =  0 )
53 oveq1 6291 . . . . . . . . . . . . . 14  |-  ( m  =  1  ->  (
m  -  1 )  =  ( 1  -  1 ) )
54 1m1e0 10604 . . . . . . . . . . . . . 14  |-  ( 1  -  1 )  =  0
5553, 54syl6eq 2524 . . . . . . . . . . . . 13  |-  ( m  =  1  ->  (
m  -  1 )  =  0 )
5655fveq2d 5870 . . . . . . . . . . . 12  |-  ( m  =  1  ->  (ψ `  ( m  -  1 ) )  =  (ψ `  0 ) )
57 2pos 10627 . . . . . . . . . . . . 13  |-  0  <  2
58 0re 9596 . . . . . . . . . . . . . 14  |-  0  e.  RR
59 chpeq0 23239 . . . . . . . . . . . . . 14  |-  ( 0  e.  RR  ->  (
(ψ `  0 )  =  0  <->  0  <  2 ) )
6058, 59ax-mp 5 . . . . . . . . . . . . 13  |-  ( (ψ `  0 )  =  0  <->  0  <  2
)
6157, 60mpbir 209 . . . . . . . . . . . 12  |-  (ψ ` 
0 )  =  0
6256, 61syl6eq 2524 . . . . . . . . . . 11  |-  ( m  =  1  ->  (ψ `  ( m  -  1 ) )  =  0 )
6352, 62jca 532 . . . . . . . . . 10  |-  ( m  =  1  ->  (
( log `  m
)  =  0  /\  (ψ `  ( m  -  1 ) )  =  0 ) )
64 fveq2 5866 . . . . . . . . . . 11  |-  ( m  =  ( ( |_
`  x )  +  1 )  ->  ( log `  m )  =  ( log `  (
( |_ `  x
)  +  1 ) ) )
65 oveq1 6291 . . . . . . . . . . . 12  |-  ( m  =  ( ( |_
`  x )  +  1 )  ->  (
m  -  1 )  =  ( ( ( |_ `  x )  +  1 )  - 
1 ) )
6665fveq2d 5870 . . . . . . . . . . 11  |-  ( m  =  ( ( |_
`  x )  +  1 )  ->  (ψ `  ( m  -  1 ) )  =  (ψ `  ( ( ( |_
`  x )  +  1 )  -  1 ) ) )
6764, 66jca 532 . . . . . . . . . 10  |-  ( m  =  ( ( |_
`  x )  +  1 )  ->  (
( log `  m
)  =  ( log `  ( ( |_ `  x )  +  1 ) )  /\  (ψ `  ( m  -  1 ) )  =  (ψ `  ( ( ( |_
`  x )  +  1 )  -  1 ) ) ) )
68 nnuz 11117 . . . . . . . . . . 11  |-  NN  =  ( ZZ>= `  1 )
699, 68syl6eleq 2565 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( ( |_ `  x )  +  1 )  e.  ( ZZ>= `  1 )
)
70 elfznn 11714 . . . . . . . . . . . . . 14  |-  ( m  e.  ( 1 ... ( ( |_ `  x )  +  1 ) )  ->  m  e.  NN )
7170adantl 466 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  m  e.  ( 1 ... (
( |_ `  x
)  +  1 ) ) )  ->  m  e.  NN )
7271nnrpd 11255 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  m  e.  ( 1 ... (
( |_ `  x
)  +  1 ) ) )  ->  m  e.  RR+ )
7372relogcld 22764 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  m  e.  ( 1 ... (
( |_ `  x
)  +  1 ) ) )  ->  ( log `  m )  e.  RR )
7473recnd 9622 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  m  e.  ( 1 ... (
( |_ `  x
)  +  1 ) ) )  ->  ( log `  m )  e.  CC )
7571nnred 10551 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  m  e.  ( 1 ... (
( |_ `  x
)  +  1 ) ) )  ->  m  e.  RR )
76 peano2rem 9886 . . . . . . . . . . . . 13  |-  ( m  e.  RR  ->  (
m  -  1 )  e.  RR )
7775, 76syl 16 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  m  e.  ( 1 ... (
( |_ `  x
)  +  1 ) ) )  ->  (
m  -  1 )  e.  RR )
78 chpcl 23154 . . . . . . . . . . . 12  |-  ( ( m  -  1 )  e.  RR  ->  (ψ `  ( m  -  1 ) )  e.  RR )
7977, 78syl 16 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  m  e.  ( 1 ... (
( |_ `  x
)  +  1 ) ) )  ->  (ψ `  ( m  -  1 ) )  e.  RR )
8079recnd 9622 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  m  e.  ( 1 ... (
( |_ `  x
)  +  1 ) ) )  ->  (ψ `  ( m  -  1 ) )  e.  CC )
8145, 49, 63, 67, 69, 74, 80fsumparts 13583 . . . . . . . . 9  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1..^ ( ( |_ `  x )  +  1 ) ) ( ( log `  n
)  x.  ( (ψ `  ( ( n  + 
1 )  -  1 ) )  -  (ψ `  ( n  -  1 ) ) ) )  =  ( ( ( ( log `  (
( |_ `  x
)  +  1 ) )  x.  (ψ `  ( ( ( |_
`  x )  +  1 )  -  1 ) ) )  -  ( 0  x.  0 ) )  -  sum_ n  e.  ( 1..^ ( ( |_ `  x
)  +  1 ) ) ( ( ( log `  ( n  +  1 ) )  -  ( log `  n
) )  x.  (ψ `  ( ( n  + 
1 )  -  1 ) ) ) ) )
827nn0zd 10964 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  ( |_
`  x )  e.  ZZ )
83 fzval3 11853 . . . . . . . . . . . 12  |-  ( ( |_ `  x )  e.  ZZ  ->  (
1 ... ( |_ `  x ) )  =  ( 1..^ ( ( |_ `  x )  +  1 ) ) )
8482, 83syl 16 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( 1 ... ( |_ `  x ) )  =  ( 1..^ ( ( |_ `  x )  +  1 ) ) )
8584eqcomd 2475 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( 1..^ ( ( |_ `  x )  +  1 ) )  =  ( 1 ... ( |_
`  x ) ) )
8619nncnd 10552 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  CC )
87 ax-1cn 9550 . . . . . . . . . . . . . . . . . 18  |-  1  e.  CC
88 pncan 9826 . . . . . . . . . . . . . . . . . 18  |-  ( ( n  e.  CC  /\  1  e.  CC )  ->  ( ( n  + 
1 )  -  1 )  =  n )
8986, 87, 88sylancl 662 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
n  +  1 )  -  1 )  =  n )
90 npcan 9829 . . . . . . . . . . . . . . . . . 18  |-  ( ( n  e.  CC  /\  1  e.  CC )  ->  ( ( n  - 
1 )  +  1 )  =  n )
9186, 87, 90sylancl 662 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
n  -  1 )  +  1 )  =  n )
9289, 91eqtr4d 2511 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
n  +  1 )  -  1 )  =  ( ( n  - 
1 )  +  1 ) )
9392fveq2d 5870 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (ψ `  (
( n  +  1 )  -  1 ) )  =  (ψ `  ( ( n  - 
1 )  +  1 ) ) )
94 nnm1nn0 10837 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  NN  ->  (
n  -  1 )  e.  NN0 )
9519, 94syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( n  -  1 )  e. 
NN0 )
96 chpp1 23185 . . . . . . . . . . . . . . . 16  |-  ( ( n  -  1 )  e.  NN0  ->  (ψ `  ( ( n  - 
1 )  +  1 ) )  =  ( (ψ `  ( n  -  1 ) )  +  (Λ `  (
( n  -  1 )  +  1 ) ) ) )
9795, 96syl 16 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (ψ `  (
( n  -  1 )  +  1 ) )  =  ( (ψ `  ( n  -  1 ) )  +  (Λ `  ( ( n  - 
1 )  +  1 ) ) ) )
9891fveq2d 5870 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  (
( n  -  1 )  +  1 ) )  =  (Λ `  n
) )
9998oveq2d 6300 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (ψ `  ( n  -  1 ) )  +  (Λ `  ( ( n  - 
1 )  +  1 ) ) )  =  ( (ψ `  (
n  -  1 ) )  +  (Λ `  n
) ) )
10093, 97, 993eqtrd 2512 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (ψ `  (
( n  +  1 )  -  1 ) )  =  ( (ψ `  ( n  -  1 ) )  +  (Λ `  n ) ) )
101100oveq1d 6299 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (ψ `  ( ( n  + 
1 )  -  1 ) )  -  (ψ `  ( n  -  1 ) ) )  =  ( ( (ψ `  ( n  -  1
) )  +  (Λ `  n ) )  -  (ψ `  ( n  - 
1 ) ) ) )
10295nn0red 10853 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( n  -  1 )  e.  RR )
103 chpcl 23154 . . . . . . . . . . . . . . . 16  |-  ( ( n  -  1 )  e.  RR  ->  (ψ `  ( n  -  1 ) )  e.  RR )
104102, 103syl 16 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (ψ `  (
n  -  1 ) )  e.  RR )
105104recnd 9622 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (ψ `  (
n  -  1 ) )  e.  CC )
106 vmacl 23148 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN  ->  (Λ `  n )  e.  RR )
10719, 106syl 16 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  n
)  e.  RR )
108107recnd 9622 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  n
)  e.  CC )
109105, 108pncan2d 9932 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(ψ `  ( n  -  1 ) )  +  (Λ `  n
) )  -  (ψ `  ( n  -  1 ) ) )  =  (Λ `  n )
)
110101, 109eqtrd 2508 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (ψ `  ( ( n  + 
1 )  -  1 ) )  -  (ψ `  ( n  -  1 ) ) )  =  (Λ `  n )
)
111110oveq2d 6300 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( log `  n )  x.  ( (ψ `  (
( n  +  1 )  -  1 ) )  -  (ψ `  ( n  -  1
) ) ) )  =  ( ( log `  n )  x.  (Λ `  n ) ) )
11220relogcld 22764 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  n )  e.  RR )
113112recnd 9622 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  n )  e.  CC )
114108, 113mulcomd 9617 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  ( log `  n ) )  =  ( ( log `  n )  x.  (Λ `  n ) ) )
115111, 114eqtr4d 2511 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( log `  n )  x.  ( (ψ `  (
( n  +  1 )  -  1 ) )  -  (ψ `  ( n  -  1
) ) ) )  =  ( (Λ `  n
)  x.  ( log `  n ) ) )
11685, 115sumeq12rdv 13492 . . . . . . . . 9  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1..^ ( ( |_ `  x )  +  1 ) ) ( ( log `  n
)  x.  ( (ψ `  ( ( n  + 
1 )  -  1 ) )  -  (ψ `  ( n  -  1 ) ) ) )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  ( log `  n ) ) )
1177nn0cnd 10854 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  RR+  ->  ( |_
`  x )  e.  CC )
118 pncan 9826 . . . . . . . . . . . . . . . . 17  |-  ( ( ( |_ `  x
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( |_
`  x )  +  1 )  -  1 )  =  ( |_
`  x ) )
119117, 87, 118sylancl 662 . . . . . . . . . . . . . . . 16  |-  ( x  e.  RR+  ->  ( ( ( |_ `  x
)  +  1 )  -  1 )  =  ( |_ `  x
) )
120119fveq2d 5870 . . . . . . . . . . . . . . 15  |-  ( x  e.  RR+  ->  (ψ `  ( ( ( |_
`  x )  +  1 )  -  1 ) )  =  (ψ `  ( |_ `  x
) ) )
121 chpfl 23180 . . . . . . . . . . . . . . . 16  |-  ( x  e.  RR  ->  (ψ `  ( |_ `  x
) )  =  (ψ `  x ) )
1221, 121syl 16 . . . . . . . . . . . . . . 15  |-  ( x  e.  RR+  ->  (ψ `  ( |_ `  x ) )  =  (ψ `  x ) )
123120, 122eqtrd 2508 . . . . . . . . . . . . . 14  |-  ( x  e.  RR+  ->  (ψ `  ( ( ( |_
`  x )  +  1 )  -  1 ) )  =  (ψ `  x ) )
124123oveq2d 6300 . . . . . . . . . . . . 13  |-  ( x  e.  RR+  ->  ( ( log `  ( ( |_ `  x )  +  1 ) )  x.  (ψ `  (
( ( |_ `  x )  +  1 )  -  1 ) ) )  =  ( ( log `  (
( |_ `  x
)  +  1 ) )  x.  (ψ `  x ) ) )
12512, 4mulcomd 9617 . . . . . . . . . . . . 13  |-  ( x  e.  RR+  ->  ( ( log `  ( ( |_ `  x )  +  1 ) )  x.  (ψ `  x
) )  =  ( (ψ `  x )  x.  ( log `  (
( |_ `  x
)  +  1 ) ) ) )
126124, 125eqtrd 2508 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  ( ( log `  ( ( |_ `  x )  +  1 ) )  x.  (ψ `  (
( ( |_ `  x )  +  1 )  -  1 ) ) )  =  ( (ψ `  x )  x.  ( log `  (
( |_ `  x
)  +  1 ) ) ) )
127 0cn 9588 . . . . . . . . . . . . . 14  |-  0  e.  CC
128127mul01i 9769 . . . . . . . . . . . . 13  |-  ( 0  x.  0 )  =  0
129128a1i 11 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  ( 0  x.  0 )  =  0 )
130126, 129oveq12d 6302 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( ( ( log `  (
( |_ `  x
)  +  1 ) )  x.  (ψ `  ( ( ( |_
`  x )  +  1 )  -  1 ) ) )  -  ( 0  x.  0 ) )  =  ( ( (ψ `  x
)  x.  ( log `  ( ( |_ `  x )  +  1 ) ) )  - 
0 ) )
13137subid1d 9919 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( ( (ψ `  x )  x.  ( log `  (
( |_ `  x
)  +  1 ) ) )  -  0 )  =  ( (ψ `  x )  x.  ( log `  ( ( |_
`  x )  +  1 ) ) ) )
132130, 131eqtrd 2508 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( ( ( log `  (
( |_ `  x
)  +  1 ) )  x.  (ψ `  ( ( ( |_
`  x )  +  1 )  -  1 ) ) )  -  ( 0  x.  0 ) )  =  ( (ψ `  x )  x.  ( log `  (
( |_ `  x
)  +  1 ) ) ) )
13389fveq2d 5870 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (ψ `  (
( n  +  1 )  -  1 ) )  =  (ψ `  n ) )
134133oveq2d 6300 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( log `  (
n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  ( (
n  +  1 )  -  1 ) ) )  =  ( ( ( log `  (
n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n )
) )
13585, 134sumeq12rdv 13492 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1..^ ( ( |_ `  x )  +  1 ) ) ( ( ( log `  ( n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  (
( n  +  1 )  -  1 ) ) )  =  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( log `  (
n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n )
) )
136132, 135oveq12d 6302 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( ( ( ( log `  (
( |_ `  x
)  +  1 ) )  x.  (ψ `  ( ( ( |_
`  x )  +  1 )  -  1 ) ) )  -  ( 0  x.  0 ) )  -  sum_ n  e.  ( 1..^ ( ( |_ `  x
)  +  1 ) ) ( ( ( log `  ( n  +  1 ) )  -  ( log `  n
) )  x.  (ψ `  ( ( n  + 
1 )  -  1 ) ) ) )  =  ( ( (ψ `  x )  x.  ( log `  ( ( |_
`  x )  +  1 ) ) )  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( log `  ( n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n
) ) ) )
13781, 116, 1363eqtr3d 2516 . . . . . . . 8  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( log `  n ) )  =  ( ( (ψ `  x )  x.  ( log `  ( ( |_
`  x )  +  1 ) ) )  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( log `  ( n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n
) ) ) )
138137oveq1d 6299 . . . . . . 7  |-  ( x  e.  RR+  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  ( log `  n ) )  -  ( (ψ `  x )  x.  ( log `  x ) ) )  =  ( ( ( (ψ `  x
)  x.  ( log `  ( ( |_ `  x )  +  1 ) ) )  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( log `  (
n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n )
) )  -  (
(ψ `  x )  x.  ( log `  x
) ) ) )
13939, 41, 1383eqtr4d 2518 . . . . . 6  |-  ( x  e.  RR+  ->  ( ( (ψ `  x )  x.  ( ( log `  (
( |_ `  x
)  +  1 ) )  -  ( log `  x ) ) )  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( log `  ( n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n
) ) )  =  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  ( log `  n ) )  -  ( (ψ `  x )  x.  ( log `  x
) ) ) )
140139oveq1d 6299 . . . . 5  |-  ( x  e.  RR+  ->  ( ( ( (ψ `  x
)  x.  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x
) ) )  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( log `  (
n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n )
) )  /  x
)  =  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( log `  n
) )  -  (
(ψ `  x )  x.  ( log `  x
) ) )  /  x ) )
141 div23 10226 . . . . . . 7  |-  ( ( (ψ `  x )  e.  CC  /\  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x
) )  e.  CC  /\  ( x  e.  CC  /\  x  =/=  0 ) )  ->  ( (
(ψ `  x )  x.  ( ( log `  (
( |_ `  x
)  +  1 ) )  -  ( log `  x ) ) )  /  x )  =  ( ( (ψ `  x )  /  x
)  x.  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x
) ) ) )
1424, 15, 34, 141syl3anc 1228 . . . . . 6  |-  ( x  e.  RR+  ->  ( ( (ψ `  x )  x.  ( ( log `  (
( |_ `  x
)  +  1 ) )  -  ( log `  x ) ) )  /  x )  =  ( ( (ψ `  x )  /  x
)  x.  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x
) ) ) )
143142oveq1d 6299 . . . . 5  |-  ( x  e.  RR+  ->  ( ( ( (ψ `  x
)  x.  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x
) ) )  /  x )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( log `  (
n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n )
)  /  x ) )  =  ( ( ( (ψ `  x
)  /  x )  x.  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x ) ) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( log `  (
n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n )
)  /  x ) ) )
14436, 140, 1433eqtr3rd 2517 . . . 4  |-  ( x  e.  RR+  ->  ( ( ( (ψ `  x
)  /  x )  x.  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x ) ) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( log `  (
n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n )
)  /  x ) )  =  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( log `  n
) )  -  (
(ψ `  x )  x.  ( log `  x
) ) )  /  x ) )
145144mpteq2ia 4529 . . 3  |-  ( x  e.  RR+  |->  ( ( ( (ψ `  x
)  /  x )  x.  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x ) ) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( log `  (
n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n )
)  /  x ) ) )  =  ( x  e.  RR+  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( log `  n
) )  -  (
(ψ `  x )  x.  ( log `  x
) ) )  /  x ) )
146 ovex 6309 . . . . 5  |-  ( ( (ψ `  x )  /  x )  x.  (
( log `  (
( |_ `  x
)  +  1 ) )  -  ( log `  x ) ) )  e.  _V
147146a1i 11 . . . 4  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( ( (ψ `  x )  /  x )  x.  (
( log `  (
( |_ `  x
)  +  1 ) )  -  ( log `  x ) ) )  e.  _V )
148 ovex 6309 . . . . 5  |-  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( log `  (
n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n )
)  /  x )  e.  _V
149148a1i 11 . . . 4  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( log `  (
n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n )
)  /  x )  e.  _V )
150 reex 9583 . . . . . . . 8  |-  RR  e.  _V
151 rpssre 11230 . . . . . . . 8  |-  RR+  C_  RR
152150, 151ssexi 4592 . . . . . . 7  |-  RR+  e.  _V
153152a1i 11 . . . . . 6  |-  ( T. 
->  RR+  e.  _V )
154 ovex 6309 . . . . . . 7  |-  ( (ψ `  x )  /  x
)  e.  _V
155154a1i 11 . . . . . 6  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( (ψ `  x )  /  x
)  e.  _V )
15615adantl 466 . . . . . 6  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x
) )  e.  CC )
157 eqidd 2468 . . . . . 6  |-  ( T. 
->  ( x  e.  RR+  |->  ( (ψ `  x )  /  x ) )  =  ( x  e.  RR+  |->  ( (ψ `  x )  /  x ) ) )
158 eqidd 2468 . . . . . 6  |-  ( T. 
->  ( x  e.  RR+  |->  ( ( log `  (
( |_ `  x
)  +  1 ) )  -  ( log `  x ) ) )  =  ( x  e.  RR+  |->  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x ) ) ) )
159153, 155, 156, 157, 158offval2 6540 . . . . 5  |-  ( T. 
->  ( ( x  e.  RR+  |->  ( (ψ `  x )  /  x
) )  oF  x.  ( x  e.  RR+  |->  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x ) ) ) )  =  ( x  e.  RR+  |->  ( ( (ψ `  x )  /  x )  x.  (
( log `  (
( |_ `  x
)  +  1 ) )  -  ( log `  x ) ) ) ) )
160 chpo1ub 23421 . . . . . 6  |-  ( x  e.  RR+  |->  ( (ψ `  x )  /  x
) )  e.  O(1)
161 0red 9597 . . . . . . . 8  |-  ( T. 
->  0  e.  RR )
162 1red 9611 . . . . . . . 8  |-  ( T. 
->  1  e.  RR )
163 divrcnv 13627 . . . . . . . . 9  |-  ( 1  e.  CC  ->  (
x  e.  RR+  |->  ( 1  /  x ) )  ~~> r  0 )
16487, 163mp1i 12 . . . . . . . 8  |-  ( T. 
->  ( x  e.  RR+  |->  ( 1  /  x
) )  ~~> r  0 )
165 rpreccl 11243 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( 1  /  x )  e.  RR+ )
166165rpred 11256 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( 1  /  x )  e.  RR )
167166adantl 466 . . . . . . . 8  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( 1  /  x )  e.  RR )
16811, 13resubcld 9987 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x
) )  e.  RR )
169168adantl 466 . . . . . . . 8  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x
) )  e.  RR )
170 rpaddcl 11240 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  1  e.  RR+ )  ->  (
x  +  1 )  e.  RR+ )
17121, 170mpan2 671 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  ( x  +  1 )  e.  RR+ )
172171relogcld 22764 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( log `  ( x  +  1 ) )  e.  RR )
173172, 13resubcld 9987 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( ( log `  ( x  +  1 ) )  -  ( log `  x
) )  e.  RR )
1747nn0red 10853 . . . . . . . . . . . . 13  |-  ( x  e.  RR+  ->  ( |_
`  x )  e.  RR )
175 1red 9611 . . . . . . . . . . . . 13  |-  ( x  e.  RR+  ->  1  e.  RR )
176 flle 11904 . . . . . . . . . . . . . 14  |-  ( x  e.  RR  ->  ( |_ `  x )  <_  x )
1771, 176syl 16 . . . . . . . . . . . . 13  |-  ( x  e.  RR+  ->  ( |_
`  x )  <_  x )
178174, 1, 175, 177leadd1dd 10166 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  ( ( |_ `  x )  +  1 )  <_ 
( x  +  1 ) )
17910, 171logled 22768 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  ( ( ( |_ `  x
)  +  1 )  <_  ( x  + 
1 )  <->  ( log `  ( ( |_ `  x )  +  1 ) )  <_  ( log `  ( x  + 
1 ) ) ) )
180178, 179mpbid 210 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( log `  ( ( |_ `  x )  +  1 ) )  <_  ( log `  ( x  + 
1 ) ) )
18111, 172, 13, 180lesub1dd 10168 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x
) )  <_  (
( log `  (
x  +  1 ) )  -  ( log `  x ) ) )
182 logdifbnd 23079 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( ( log `  ( x  +  1 ) )  -  ( log `  x
) )  <_  (
1  /  x ) )
183168, 173, 166, 181, 182letrd 9738 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x
) )  <_  (
1  /  x ) )
184183ad2antrl 727 . . . . . . . 8  |-  ( ( T.  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( log `  (
( |_ `  x
)  +  1 ) )  -  ( log `  x ) )  <_ 
( 1  /  x
) )
185 fllep1 11906 . . . . . . . . . . . 12  |-  ( x  e.  RR  ->  x  <_  ( ( |_ `  x )  +  1 ) )
1861, 185syl 16 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  x  <_ 
( ( |_ `  x )  +  1 ) )
187 logleb 22744 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  (
( |_ `  x
)  +  1 )  e.  RR+ )  ->  (
x  <_  ( ( |_ `  x )  +  1 )  <->  ( log `  x )  <_  ( log `  ( ( |_
`  x )  +  1 ) ) ) )
18810, 187mpdan 668 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( x  <_  ( ( |_
`  x )  +  1 )  <->  ( log `  x )  <_  ( log `  ( ( |_
`  x )  +  1 ) ) ) )
189186, 188mpbid 210 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( log `  x )  <_  ( log `  ( ( |_
`  x )  +  1 ) ) )
19011, 13subge0d 10142 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( 0  <_  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x ) )  <-> 
( log `  x
)  <_  ( log `  ( ( |_ `  x )  +  1 ) ) ) )
191189, 190mpbird 232 . . . . . . . . 9  |-  ( x  e.  RR+  ->  0  <_ 
( ( log `  (
( |_ `  x
)  +  1 ) )  -  ( log `  x ) ) )
192191ad2antrl 727 . . . . . . . 8  |-  ( ( T.  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
0  <_  ( ( log `  ( ( |_
`  x )  +  1 ) )  -  ( log `  x ) ) )
193161, 162, 164, 167, 169, 184, 192rlimsqz2 13436 . . . . . . 7  |-  ( T. 
->  ( x  e.  RR+  |->  ( ( log `  (
( |_ `  x
)  +  1 ) )  -  ( log `  x ) ) )  ~~> r  0 )
194 rlimo1 13402 . . . . . . 7  |-  ( ( x  e.  RR+  |->  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x
) ) )  ~~> r  0  ->  ( x  e.  RR+  |->  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x ) ) )  e.  O(1) )
195193, 194syl 16 . . . . . 6  |-  ( T. 
->  ( x  e.  RR+  |->  ( ( log `  (
( |_ `  x
)  +  1 ) )  -  ( log `  x ) ) )  e.  O(1) )
196 o1mul 13400 . . . . . 6  |-  ( ( ( x  e.  RR+  |->  ( (ψ `  x )  /  x ) )  e.  O(1)  /\  ( x  e.  RR+  |->  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x ) ) )  e.  O(1) )  -> 
( ( x  e.  RR+  |->  ( (ψ `  x )  /  x
) )  oF  x.  ( x  e.  RR+  |->  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x ) ) ) )  e.  O(1) )
197160, 195, 196sylancr 663 . . . . 5  |-  ( T. 
->  ( ( x  e.  RR+  |->  ( (ψ `  x )  /  x
) )  oF  x.  ( x  e.  RR+  |->  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x ) ) ) )  e.  O(1) )
198159, 197eqeltrrd 2556 . . . 4  |-  ( T. 
->  ( x  e.  RR+  |->  ( ( (ψ `  x )  /  x
)  x.  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x
) ) ) )  e.  O(1) )
199 nnrp 11229 . . . . . . . . 9  |-  ( m  e.  NN  ->  m  e.  RR+ )
200199ssriv 3508 . . . . . . . 8  |-  NN  C_  RR+
201200a1i 11 . . . . . . 7  |-  ( T. 
->  NN  C_  RR+ )
202201sselda 3504 . . . . . 6  |-  ( ( T.  /\  n  e.  NN )  ->  n  e.  RR+ )
203202, 31syl 16 . . . . 5  |-  ( ( T.  /\  n  e.  NN )  ->  (
( ( log `  (
n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n )
)  e.  CC )
204 chpo1ub 23421 . . . . . . . 8  |-  ( n  e.  RR+  |->  ( (ψ `  n )  /  n
) )  e.  O(1)
205204a1i 11 . . . . . . 7  |-  ( T. 
->  ( n  e.  RR+  |->  ( (ψ `  n )  /  n ) )  e.  O(1) )
206 rerpdivcl 11247 . . . . . . . . 9  |-  ( ( (ψ `  n )  e.  RR  /\  n  e.  RR+ )  ->  ( (ψ `  n )  /  n
)  e.  RR )
20729, 206mpancom 669 . . . . . . . 8  |-  ( n  e.  RR+  ->  ( (ψ `  n )  /  n
)  e.  RR )
208207adantl 466 . . . . . . 7  |-  ( ( T.  /\  n  e.  RR+ )  ->  ( (ψ `  n )  /  n
)  e.  RR )
20931adantl 466 . . . . . . 7  |-  ( ( T.  /\  n  e.  RR+ )  ->  ( ( ( log `  (
n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n )
)  e.  CC )
210 rpreccl 11243 . . . . . . . . . . 11  |-  ( n  e.  RR+  ->  ( 1  /  n )  e.  RR+ )
211210rpred 11256 . . . . . . . . . 10  |-  ( n  e.  RR+  ->  ( 1  /  n )  e.  RR )
212 chpge0 23156 . . . . . . . . . . 11  |-  ( n  e.  RR  ->  0  <_  (ψ `  n )
)
21327, 212syl 16 . . . . . . . . . 10  |-  ( n  e.  RR+  ->  0  <_ 
(ψ `  n )
)
214 logdifbnd 23079 . . . . . . . . . 10  |-  ( n  e.  RR+  ->  ( ( log `  ( n  +  1 ) )  -  ( log `  n
) )  <_  (
1  /  n ) )
21526, 211, 29, 213, 214lemul1ad 10485 . . . . . . . . 9  |-  ( n  e.  RR+  ->  ( ( ( log `  (
n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n )
)  <_  ( (
1  /  n )  x.  (ψ `  n
) ) )
21627lep1d 10477 . . . . . . . . . . . . 13  |-  ( n  e.  RR+  ->  n  <_ 
( n  +  1 ) )
217 logleb 22744 . . . . . . . . . . . . . 14  |-  ( ( n  e.  RR+  /\  (
n  +  1 )  e.  RR+ )  ->  (
n  <_  ( n  +  1 )  <->  ( log `  n )  <_  ( log `  ( n  + 
1 ) ) ) )
21823, 217mpdan 668 . . . . . . . . . . . . 13  |-  ( n  e.  RR+  ->  ( n  <_  ( n  + 
1 )  <->  ( log `  n )  <_  ( log `  ( n  + 
1 ) ) ) )
219216, 218mpbid 210 . . . . . . . . . . . 12  |-  ( n  e.  RR+  ->  ( log `  n )  <_  ( log `  ( n  + 
1 ) ) )
22024, 25subge0d 10142 . . . . . . . . . . . 12  |-  ( n  e.  RR+  ->  ( 0  <_  ( ( log `  ( n  +  1 ) )  -  ( log `  n ) )  <-> 
( log `  n
)  <_  ( log `  ( n  +  1 ) ) ) )
221219, 220mpbird 232 . . . . . . . . . . 11  |-  ( n  e.  RR+  ->  0  <_ 
( ( log `  (
n  +  1 ) )  -  ( log `  n ) ) )
22226, 29, 221, 213mulge0d 10129 . . . . . . . . . 10  |-  ( n  e.  RR+  ->  0  <_ 
( ( ( log `  ( n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n
) ) )
22330, 222absidd 13217 . . . . . . . . 9  |-  ( n  e.  RR+  ->  ( abs `  ( ( ( log `  ( n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n
) ) )  =  ( ( ( log `  ( n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n
) ) )
224 rpregt0 11233 . . . . . . . . . . . 12  |-  ( n  e.  RR+  ->  ( n  e.  RR  /\  0  <  n ) )
225 divge0 10411 . . . . . . . . . . . 12  |-  ( ( ( (ψ `  n
)  e.  RR  /\  0  <_  (ψ `  n
) )  /\  (
n  e.  RR  /\  0  <  n ) )  ->  0  <_  (
(ψ `  n )  /  n ) )
22629, 213, 224, 225syl21anc 1227 . . . . . . . . . . 11  |-  ( n  e.  RR+  ->  0  <_ 
( (ψ `  n
)  /  n ) )
227207, 226absidd 13217 . . . . . . . . . 10  |-  ( n  e.  RR+  ->  ( abs `  ( (ψ `  n
)  /  n ) )  =  ( (ψ `  n )  /  n
) )
22829recnd 9622 . . . . . . . . . . 11  |-  ( n  e.  RR+  ->  (ψ `  n )  e.  CC )
229 rpcn 11228 . . . . . . . . . . 11  |-  ( n  e.  RR+  ->  n  e.  CC )
230 rpne0 11235 . . . . . . . . . . 11  |-  ( n  e.  RR+  ->  n  =/=  0 )
231228, 229, 230divrec2d 10324 . . . . . . . . . 10  |-  ( n  e.  RR+  ->  ( (ψ `  n )  /  n
)  =  ( ( 1  /  n )  x.  (ψ `  n
) ) )
232227, 231eqtrd 2508 . . . . . . . . 9  |-  ( n  e.  RR+  ->  ( abs `  ( (ψ `  n
)  /  n ) )  =  ( ( 1  /  n )  x.  (ψ `  n
) ) )
233215, 223, 2323brtr4d 4477 . . . . . . . 8  |-  ( n  e.  RR+  ->  ( abs `  ( ( ( log `  ( n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n
) ) )  <_ 
( abs `  (
(ψ `  n )  /  n ) ) )
234233ad2antrl 727 . . . . . . 7  |-  ( ( T.  /\  ( n  e.  RR+  /\  1  <_  n ) )  -> 
( abs `  (
( ( log `  (
n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n )
) )  <_  ( abs `  ( (ψ `  n )  /  n
) ) )
235162, 205, 208, 209, 234o1le 13438 . . . . . 6  |-  ( T. 
->  ( n  e.  RR+  |->  ( ( ( log `  ( n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n
) ) )  e.  O(1) )
236201, 235o1res2 13349 . . . . 5  |-  ( T. 
->  ( n  e.  NN  |->  ( ( ( log `  ( n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n
) ) )  e.  O(1) )
237203, 236o1fsum 13590 . . . 4  |-  ( T. 
->  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( log `  ( n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n
) )  /  x
) )  e.  O(1) )
238147, 149, 198, 237o1sub2 13411 . . 3  |-  ( T. 
->  ( x  e.  RR+  |->  ( ( ( (ψ `  x )  /  x
)  x.  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x
) ) )  -  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( log `  ( n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n
) )  /  x
) ) )  e.  O(1) )
239145, 238syl5eqelr 2560 . 2  |-  ( T. 
->  ( x  e.  RR+  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( log `  n ) )  -  ( (ψ `  x )  x.  ( log `  x
) ) )  /  x ) )  e.  O(1) )
240239trud 1388 1  |-  ( x  e.  RR+  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( log `  n
) )  -  (
(ψ `  x )  x.  ( log `  x
) ) )  /  x ) )  e.  O(1)
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    = wceq 1379   T. wtru 1380    e. wcel 1767    =/= wne 2662   _Vcvv 3113    C_ wss 3476   class class class wbr 4447    |-> cmpt 4505   ` cfv 5588  (class class class)co 6284    oFcof 6522   CCcc 9490   RRcr 9491   0cc0 9492   1c1 9493    + caddc 9495    x. cmul 9497    < clt 9628    <_ cle 9629    - cmin 9805    / cdiv 10206   NNcn 10536   2c2 10585   NN0cn0 10795   ZZcz 10864   ZZ>=cuz 11082   RR+crp 11220   ...cfz 11672  ..^cfzo 11792   |_cfl 11895   abscabs 13030    ~~> r crli 13271   O(1)co1 13272   sum_csu 13471   logclog 22698  Λcvma 23121  ψcchp 23122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-inf2 8058  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569  ax-pre-sup 9570  ax-addf 9571  ax-mulf 9572
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-isom 5597  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-of 6524  df-om 6685  df-1st 6784  df-2nd 6785  df-supp 6902  df-recs 7042  df-rdg 7076  df-1o 7130  df-2o 7131  df-oadd 7134  df-er 7311  df-map 7422  df-pm 7423  df-ixp 7470  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-fsupp 7830  df-fi 7871  df-sup 7901  df-oi 7935  df-card 8320  df-cda 8548  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-div 10207  df-nn 10537  df-2 10594  df-3 10595  df-4 10596  df-5 10597  df-6 10598  df-7 10599  df-8 10600  df-9 10601  df-10 10602  df-n0 10796  df-z 10865  df-dec 10977  df-uz 11083  df-q 11183  df-rp 11221  df-xneg 11318  df-xadd 11319  df-xmul 11320  df-ioo 11533  df-ioc 11534  df-ico 11535  df-icc 11536  df-fz 11673  df-fzo 11793  df-fl 11897  df-mod 11965  df-seq 12076  df-exp 12135  df-fac 12322  df-bc 12349  df-hash 12374  df-shft 12863  df-cj 12895  df-re 12896  df-im 12897  df-sqrt 13031  df-abs 13032  df-limsup 13257  df-clim 13274  df-rlim 13275  df-o1 13276  df-lo1 13277  df-sum 13472  df-ef 13665  df-e 13666  df-sin 13667  df-cos 13668  df-pi 13670  df-dvds 13848  df-gcd 14004  df-prm 14077  df-pc 14220  df-struct 14492  df-ndx 14493  df-slot 14494  df-base 14495  df-sets 14496  df-ress 14497  df-plusg 14568  df-mulr 14569  df-starv 14570  df-sca 14571  df-vsca 14572  df-ip 14573  df-tset 14574  df-ple 14575  df-ds 14577  df-unif 14578  df-hom 14579  df-cco 14580  df-rest 14678  df-topn 14679  df-0g 14697  df-gsum 14698  df-topgen 14699  df-pt 14700  df-prds 14703  df-xrs 14757  df-qtop 14762  df-imas 14763  df-xps 14765  df-mre 14841  df-mrc 14842  df-acs 14844  df-mnd 15732  df-submnd 15787  df-mulg 15870  df-cntz 16160  df-cmn 16606  df-psmet 18210  df-xmet 18211  df-met 18212  df-bl 18213  df-mopn 18214  df-fbas 18215  df-fg 18216  df-cnfld 18220  df-top 19194  df-bases 19196  df-topon 19197  df-topsp 19198  df-cld 19314  df-ntr 19315  df-cls 19316  df-nei 19393  df-lp 19431  df-perf 19432  df-cn 19522  df-cnp 19523  df-haus 19610  df-tx 19826  df-hmeo 20019  df-fil 20110  df-fm 20202  df-flim 20203  df-flf 20204  df-xms 20586  df-ms 20587  df-tms 20588  df-cncf 21145  df-limc 22033  df-dv 22034  df-log 22700  df-cxp 22701  df-cht 23126  df-vma 23127  df-chp 23128  df-ppi 23129
This theorem is referenced by:  selberg2  23492  selberg3lem2  23499
  Copyright terms: Public domain W3C validator