MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  selberg2lem Structured version   Unicode version

Theorem selberg2lem 23713
Description: Lemma for selberg2 23714. Equation 10.4.12 of [Shapiro], p. 420. (Contributed by Mario Carneiro, 23-May-2016.)
Assertion
Ref Expression
selberg2lem  |-  ( x  e.  RR+  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( log `  n
) )  -  (
(ψ `  x )  x.  ( log `  x
) ) )  /  x ) )  e.  O(1)
Distinct variable group:    x, n

Proof of Theorem selberg2lem
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 rpre 11237 . . . . . . . . 9  |-  ( x  e.  RR+  ->  x  e.  RR )
2 chpcl 23376 . . . . . . . . 9  |-  ( x  e.  RR  ->  (ψ `  x )  e.  RR )
31, 2syl 16 . . . . . . . 8  |-  ( x  e.  RR+  ->  (ψ `  x )  e.  RR )
43recnd 9625 . . . . . . 7  |-  ( x  e.  RR+  ->  (ψ `  x )  e.  CC )
5 rprege0 11245 . . . . . . . . . . . . 13  |-  ( x  e.  RR+  ->  ( x  e.  RR  /\  0  <_  x ) )
6 flge0nn0 11936 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR  /\  0  <_  x )  -> 
( |_ `  x
)  e.  NN0 )
75, 6syl 16 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  ( |_
`  x )  e. 
NN0 )
8 nn0p1nn 10842 . . . . . . . . . . . 12  |-  ( ( |_ `  x )  e.  NN0  ->  ( ( |_ `  x )  +  1 )  e.  NN )
97, 8syl 16 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( ( |_ `  x )  +  1 )  e.  NN )
109nnrpd 11266 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( ( |_ `  x )  +  1 )  e.  RR+ )
1110relogcld 22986 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( log `  ( ( |_ `  x )  +  1 ) )  e.  RR )
1211recnd 9625 . . . . . . . 8  |-  ( x  e.  RR+  ->  ( log `  ( ( |_ `  x )  +  1 ) )  e.  CC )
13 relogcl 22941 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( log `  x )  e.  RR )
1413recnd 9625 . . . . . . . 8  |-  ( x  e.  RR+  ->  ( log `  x )  e.  CC )
1512, 14subcld 9936 . . . . . . 7  |-  ( x  e.  RR+  ->  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x
) )  e.  CC )
164, 15mulcld 9619 . . . . . 6  |-  ( x  e.  RR+  ->  ( (ψ `  x )  x.  (
( log `  (
( |_ `  x
)  +  1 ) )  -  ( log `  x ) ) )  e.  CC )
17 fzfid 12065 . . . . . . 7  |-  ( x  e.  RR+  ->  ( 1 ... ( |_ `  x ) )  e. 
Fin )
18 elfznn 11725 . . . . . . . . . 10  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  NN )
1918adantl 466 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
2019nnrpd 11266 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  RR+ )
21 1rp 11235 . . . . . . . . . . . . 13  |-  1  e.  RR+
22 rpaddcl 11251 . . . . . . . . . . . . 13  |-  ( ( n  e.  RR+  /\  1  e.  RR+ )  ->  (
n  +  1 )  e.  RR+ )
2321, 22mpan2 671 . . . . . . . . . . . 12  |-  ( n  e.  RR+  ->  ( n  +  1 )  e.  RR+ )
2423relogcld 22986 . . . . . . . . . . 11  |-  ( n  e.  RR+  ->  ( log `  ( n  +  1 ) )  e.  RR )
25 relogcl 22941 . . . . . . . . . . 11  |-  ( n  e.  RR+  ->  ( log `  n )  e.  RR )
2624, 25resubcld 9994 . . . . . . . . . 10  |-  ( n  e.  RR+  ->  ( ( log `  ( n  +  1 ) )  -  ( log `  n
) )  e.  RR )
27 rpre 11237 . . . . . . . . . . 11  |-  ( n  e.  RR+  ->  n  e.  RR )
28 chpcl 23376 . . . . . . . . . . 11  |-  ( n  e.  RR  ->  (ψ `  n )  e.  RR )
2927, 28syl 16 . . . . . . . . . 10  |-  ( n  e.  RR+  ->  (ψ `  n )  e.  RR )
3026, 29remulcld 9627 . . . . . . . . 9  |-  ( n  e.  RR+  ->  ( ( ( log `  (
n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n )
)  e.  RR )
3130recnd 9625 . . . . . . . 8  |-  ( n  e.  RR+  ->  ( ( ( log `  (
n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n )
)  e.  CC )
3220, 31syl 16 . . . . . . 7  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( log `  (
n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n )
)  e.  CC )
3317, 32fsumcl 13537 . . . . . 6  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( log `  ( n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n
) )  e.  CC )
34 rpcnne0 11248 . . . . . 6  |-  ( x  e.  RR+  ->  ( x  e.  CC  /\  x  =/=  0 ) )
35 divsubdir 10247 . . . . . 6  |-  ( ( ( (ψ `  x
)  x.  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x
) ) )  e.  CC  /\  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( log `  ( n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n
) )  e.  CC  /\  ( x  e.  CC  /\  x  =/=  0 ) )  ->  ( (
( (ψ `  x
)  x.  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x
) ) )  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( log `  (
n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n )
) )  /  x
)  =  ( ( ( (ψ `  x
)  x.  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x
) ) )  /  x )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( log `  (
n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n )
)  /  x ) ) )
3616, 33, 34, 35syl3anc 1229 . . . . 5  |-  ( x  e.  RR+  ->  ( ( ( (ψ `  x
)  x.  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x
) ) )  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( log `  (
n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n )
) )  /  x
)  =  ( ( ( (ψ `  x
)  x.  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x
) ) )  /  x )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( log `  (
n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n )
)  /  x ) ) )
374, 12mulcld 9619 . . . . . . . 8  |-  ( x  e.  RR+  ->  ( (ψ `  x )  x.  ( log `  ( ( |_
`  x )  +  1 ) ) )  e.  CC )
384, 14mulcld 9619 . . . . . . . 8  |-  ( x  e.  RR+  ->  ( (ψ `  x )  x.  ( log `  x ) )  e.  CC )
3937, 38, 33sub32d 9968 . . . . . . 7  |-  ( x  e.  RR+  ->  ( ( ( (ψ `  x
)  x.  ( log `  ( ( |_ `  x )  +  1 ) ) )  -  ( (ψ `  x )  x.  ( log `  x
) ) )  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( log `  (
n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n )
) )  =  ( ( ( (ψ `  x )  x.  ( log `  ( ( |_
`  x )  +  1 ) ) )  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( log `  ( n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n
) ) )  -  ( (ψ `  x )  x.  ( log `  x
) ) ) )
404, 12, 14subdid 10019 . . . . . . . 8  |-  ( x  e.  RR+  ->  ( (ψ `  x )  x.  (
( log `  (
( |_ `  x
)  +  1 ) )  -  ( log `  x ) ) )  =  ( ( (ψ `  x )  x.  ( log `  ( ( |_
`  x )  +  1 ) ) )  -  ( (ψ `  x )  x.  ( log `  x ) ) ) )
4140oveq1d 6296 . . . . . . 7  |-  ( x  e.  RR+  ->  ( ( (ψ `  x )  x.  ( ( log `  (
( |_ `  x
)  +  1 ) )  -  ( log `  x ) ) )  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( log `  ( n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n
) ) )  =  ( ( ( (ψ `  x )  x.  ( log `  ( ( |_
`  x )  +  1 ) ) )  -  ( (ψ `  x )  x.  ( log `  x ) ) )  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( log `  ( n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n
) ) ) )
42 fveq2 5856 . . . . . . . . . . 11  |-  ( m  =  n  ->  ( log `  m )  =  ( log `  n
) )
43 oveq1 6288 . . . . . . . . . . . 12  |-  ( m  =  n  ->  (
m  -  1 )  =  ( n  - 
1 ) )
4443fveq2d 5860 . . . . . . . . . . 11  |-  ( m  =  n  ->  (ψ `  ( m  -  1 ) )  =  (ψ `  ( n  -  1 ) ) )
4542, 44jca 532 . . . . . . . . . 10  |-  ( m  =  n  ->  (
( log `  m
)  =  ( log `  n )  /\  (ψ `  ( m  -  1 ) )  =  (ψ `  ( n  -  1 ) ) ) )
46 fveq2 5856 . . . . . . . . . . 11  |-  ( m  =  ( n  + 
1 )  ->  ( log `  m )  =  ( log `  (
n  +  1 ) ) )
47 oveq1 6288 . . . . . . . . . . . 12  |-  ( m  =  ( n  + 
1 )  ->  (
m  -  1 )  =  ( ( n  +  1 )  - 
1 ) )
4847fveq2d 5860 . . . . . . . . . . 11  |-  ( m  =  ( n  + 
1 )  ->  (ψ `  ( m  -  1 ) )  =  (ψ `  ( ( n  + 
1 )  -  1 ) ) )
4946, 48jca 532 . . . . . . . . . 10  |-  ( m  =  ( n  + 
1 )  ->  (
( log `  m
)  =  ( log `  ( n  +  1 ) )  /\  (ψ `  ( m  -  1 ) )  =  (ψ `  ( ( n  + 
1 )  -  1 ) ) ) )
50 fveq2 5856 . . . . . . . . . . . 12  |-  ( m  =  1  ->  ( log `  m )  =  ( log `  1
) )
51 log1 22948 . . . . . . . . . . . 12  |-  ( log `  1 )  =  0
5250, 51syl6eq 2500 . . . . . . . . . . 11  |-  ( m  =  1  ->  ( log `  m )  =  0 )
53 oveq1 6288 . . . . . . . . . . . . . 14  |-  ( m  =  1  ->  (
m  -  1 )  =  ( 1  -  1 ) )
54 1m1e0 10611 . . . . . . . . . . . . . 14  |-  ( 1  -  1 )  =  0
5553, 54syl6eq 2500 . . . . . . . . . . . . 13  |-  ( m  =  1  ->  (
m  -  1 )  =  0 )
5655fveq2d 5860 . . . . . . . . . . . 12  |-  ( m  =  1  ->  (ψ `  ( m  -  1 ) )  =  (ψ `  0 ) )
57 2pos 10634 . . . . . . . . . . . . 13  |-  0  <  2
58 0re 9599 . . . . . . . . . . . . . 14  |-  0  e.  RR
59 chpeq0 23461 . . . . . . . . . . . . . 14  |-  ( 0  e.  RR  ->  (
(ψ `  0 )  =  0  <->  0  <  2 ) )
6058, 59ax-mp 5 . . . . . . . . . . . . 13  |-  ( (ψ `  0 )  =  0  <->  0  <  2
)
6157, 60mpbir 209 . . . . . . . . . . . 12  |-  (ψ ` 
0 )  =  0
6256, 61syl6eq 2500 . . . . . . . . . . 11  |-  ( m  =  1  ->  (ψ `  ( m  -  1 ) )  =  0 )
6352, 62jca 532 . . . . . . . . . 10  |-  ( m  =  1  ->  (
( log `  m
)  =  0  /\  (ψ `  ( m  -  1 ) )  =  0 ) )
64 fveq2 5856 . . . . . . . . . . 11  |-  ( m  =  ( ( |_
`  x )  +  1 )  ->  ( log `  m )  =  ( log `  (
( |_ `  x
)  +  1 ) ) )
65 oveq1 6288 . . . . . . . . . . . 12  |-  ( m  =  ( ( |_
`  x )  +  1 )  ->  (
m  -  1 )  =  ( ( ( |_ `  x )  +  1 )  - 
1 ) )
6665fveq2d 5860 . . . . . . . . . . 11  |-  ( m  =  ( ( |_
`  x )  +  1 )  ->  (ψ `  ( m  -  1 ) )  =  (ψ `  ( ( ( |_
`  x )  +  1 )  -  1 ) ) )
6764, 66jca 532 . . . . . . . . . 10  |-  ( m  =  ( ( |_
`  x )  +  1 )  ->  (
( log `  m
)  =  ( log `  ( ( |_ `  x )  +  1 ) )  /\  (ψ `  ( m  -  1 ) )  =  (ψ `  ( ( ( |_
`  x )  +  1 )  -  1 ) ) ) )
68 nnuz 11127 . . . . . . . . . . 11  |-  NN  =  ( ZZ>= `  1 )
699, 68syl6eleq 2541 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( ( |_ `  x )  +  1 )  e.  ( ZZ>= `  1 )
)
70 elfznn 11725 . . . . . . . . . . . . . 14  |-  ( m  e.  ( 1 ... ( ( |_ `  x )  +  1 ) )  ->  m  e.  NN )
7170adantl 466 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  m  e.  ( 1 ... (
( |_ `  x
)  +  1 ) ) )  ->  m  e.  NN )
7271nnrpd 11266 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  m  e.  ( 1 ... (
( |_ `  x
)  +  1 ) ) )  ->  m  e.  RR+ )
7372relogcld 22986 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  m  e.  ( 1 ... (
( |_ `  x
)  +  1 ) ) )  ->  ( log `  m )  e.  RR )
7473recnd 9625 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  m  e.  ( 1 ... (
( |_ `  x
)  +  1 ) ) )  ->  ( log `  m )  e.  CC )
7571nnred 10558 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  m  e.  ( 1 ... (
( |_ `  x
)  +  1 ) ) )  ->  m  e.  RR )
76 peano2rem 9891 . . . . . . . . . . . . 13  |-  ( m  e.  RR  ->  (
m  -  1 )  e.  RR )
7775, 76syl 16 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  m  e.  ( 1 ... (
( |_ `  x
)  +  1 ) ) )  ->  (
m  -  1 )  e.  RR )
78 chpcl 23376 . . . . . . . . . . . 12  |-  ( ( m  -  1 )  e.  RR  ->  (ψ `  ( m  -  1 ) )  e.  RR )
7977, 78syl 16 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  m  e.  ( 1 ... (
( |_ `  x
)  +  1 ) ) )  ->  (ψ `  ( m  -  1 ) )  e.  RR )
8079recnd 9625 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  m  e.  ( 1 ... (
( |_ `  x
)  +  1 ) ) )  ->  (ψ `  ( m  -  1 ) )  e.  CC )
8145, 49, 63, 67, 69, 74, 80fsumparts 13602 . . . . . . . . 9  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1..^ ( ( |_ `  x )  +  1 ) ) ( ( log `  n
)  x.  ( (ψ `  ( ( n  + 
1 )  -  1 ) )  -  (ψ `  ( n  -  1 ) ) ) )  =  ( ( ( ( log `  (
( |_ `  x
)  +  1 ) )  x.  (ψ `  ( ( ( |_
`  x )  +  1 )  -  1 ) ) )  -  ( 0  x.  0 ) )  -  sum_ n  e.  ( 1..^ ( ( |_ `  x
)  +  1 ) ) ( ( ( log `  ( n  +  1 ) )  -  ( log `  n
) )  x.  (ψ `  ( ( n  + 
1 )  -  1 ) ) ) ) )
827nn0zd 10974 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  ( |_
`  x )  e.  ZZ )
83 fzval3 11867 . . . . . . . . . . . 12  |-  ( ( |_ `  x )  e.  ZZ  ->  (
1 ... ( |_ `  x ) )  =  ( 1..^ ( ( |_ `  x )  +  1 ) ) )
8482, 83syl 16 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( 1 ... ( |_ `  x ) )  =  ( 1..^ ( ( |_ `  x )  +  1 ) ) )
8584eqcomd 2451 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( 1..^ ( ( |_ `  x )  +  1 ) )  =  ( 1 ... ( |_
`  x ) ) )
8619nncnd 10559 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  CC )
87 ax-1cn 9553 . . . . . . . . . . . . . . . . . 18  |-  1  e.  CC
88 pncan 9831 . . . . . . . . . . . . . . . . . 18  |-  ( ( n  e.  CC  /\  1  e.  CC )  ->  ( ( n  + 
1 )  -  1 )  =  n )
8986, 87, 88sylancl 662 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
n  +  1 )  -  1 )  =  n )
90 npcan 9834 . . . . . . . . . . . . . . . . . 18  |-  ( ( n  e.  CC  /\  1  e.  CC )  ->  ( ( n  - 
1 )  +  1 )  =  n )
9186, 87, 90sylancl 662 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
n  -  1 )  +  1 )  =  n )
9289, 91eqtr4d 2487 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
n  +  1 )  -  1 )  =  ( ( n  - 
1 )  +  1 ) )
9392fveq2d 5860 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (ψ `  (
( n  +  1 )  -  1 ) )  =  (ψ `  ( ( n  - 
1 )  +  1 ) ) )
94 nnm1nn0 10844 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  NN  ->  (
n  -  1 )  e.  NN0 )
9519, 94syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( n  -  1 )  e. 
NN0 )
96 chpp1 23407 . . . . . . . . . . . . . . . 16  |-  ( ( n  -  1 )  e.  NN0  ->  (ψ `  ( ( n  - 
1 )  +  1 ) )  =  ( (ψ `  ( n  -  1 ) )  +  (Λ `  (
( n  -  1 )  +  1 ) ) ) )
9795, 96syl 16 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (ψ `  (
( n  -  1 )  +  1 ) )  =  ( (ψ `  ( n  -  1 ) )  +  (Λ `  ( ( n  - 
1 )  +  1 ) ) ) )
9891fveq2d 5860 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  (
( n  -  1 )  +  1 ) )  =  (Λ `  n
) )
9998oveq2d 6297 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (ψ `  ( n  -  1 ) )  +  (Λ `  ( ( n  - 
1 )  +  1 ) ) )  =  ( (ψ `  (
n  -  1 ) )  +  (Λ `  n
) ) )
10093, 97, 993eqtrd 2488 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (ψ `  (
( n  +  1 )  -  1 ) )  =  ( (ψ `  ( n  -  1 ) )  +  (Λ `  n ) ) )
101100oveq1d 6296 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (ψ `  ( ( n  + 
1 )  -  1 ) )  -  (ψ `  ( n  -  1 ) ) )  =  ( ( (ψ `  ( n  -  1
) )  +  (Λ `  n ) )  -  (ψ `  ( n  - 
1 ) ) ) )
10295nn0red 10860 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( n  -  1 )  e.  RR )
103 chpcl 23376 . . . . . . . . . . . . . . . 16  |-  ( ( n  -  1 )  e.  RR  ->  (ψ `  ( n  -  1 ) )  e.  RR )
104102, 103syl 16 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (ψ `  (
n  -  1 ) )  e.  RR )
105104recnd 9625 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (ψ `  (
n  -  1 ) )  e.  CC )
106 vmacl 23370 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN  ->  (Λ `  n )  e.  RR )
10719, 106syl 16 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  n
)  e.  RR )
108107recnd 9625 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  n
)  e.  CC )
109105, 108pncan2d 9938 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
(ψ `  ( n  -  1 ) )  +  (Λ `  n
) )  -  (ψ `  ( n  -  1 ) ) )  =  (Λ `  n )
)
110101, 109eqtrd 2484 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (ψ `  ( ( n  + 
1 )  -  1 ) )  -  (ψ `  ( n  -  1 ) ) )  =  (Λ `  n )
)
111110oveq2d 6297 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( log `  n )  x.  ( (ψ `  (
( n  +  1 )  -  1 ) )  -  (ψ `  ( n  -  1
) ) ) )  =  ( ( log `  n )  x.  (Λ `  n ) ) )
11220relogcld 22986 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  n )  e.  RR )
113112recnd 9625 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  n )  e.  CC )
114108, 113mulcomd 9620 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  ( log `  n ) )  =  ( ( log `  n )  x.  (Λ `  n ) ) )
115111, 114eqtr4d 2487 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( log `  n )  x.  ( (ψ `  (
( n  +  1 )  -  1 ) )  -  (ψ `  ( n  -  1
) ) ) )  =  ( (Λ `  n
)  x.  ( log `  n ) ) )
11685, 115sumeq12rdv 13511 . . . . . . . . 9  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1..^ ( ( |_ `  x )  +  1 ) ) ( ( log `  n
)  x.  ( (ψ `  ( ( n  + 
1 )  -  1 ) )  -  (ψ `  ( n  -  1 ) ) ) )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  ( log `  n ) ) )
1177nn0cnd 10861 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  RR+  ->  ( |_
`  x )  e.  CC )
118 pncan 9831 . . . . . . . . . . . . . . . . 17  |-  ( ( ( |_ `  x
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( |_
`  x )  +  1 )  -  1 )  =  ( |_
`  x ) )
119117, 87, 118sylancl 662 . . . . . . . . . . . . . . . 16  |-  ( x  e.  RR+  ->  ( ( ( |_ `  x
)  +  1 )  -  1 )  =  ( |_ `  x
) )
120119fveq2d 5860 . . . . . . . . . . . . . . 15  |-  ( x  e.  RR+  ->  (ψ `  ( ( ( |_
`  x )  +  1 )  -  1 ) )  =  (ψ `  ( |_ `  x
) ) )
121 chpfl 23402 . . . . . . . . . . . . . . . 16  |-  ( x  e.  RR  ->  (ψ `  ( |_ `  x
) )  =  (ψ `  x ) )
1221, 121syl 16 . . . . . . . . . . . . . . 15  |-  ( x  e.  RR+  ->  (ψ `  ( |_ `  x ) )  =  (ψ `  x ) )
123120, 122eqtrd 2484 . . . . . . . . . . . . . 14  |-  ( x  e.  RR+  ->  (ψ `  ( ( ( |_
`  x )  +  1 )  -  1 ) )  =  (ψ `  x ) )
124123oveq2d 6297 . . . . . . . . . . . . 13  |-  ( x  e.  RR+  ->  ( ( log `  ( ( |_ `  x )  +  1 ) )  x.  (ψ `  (
( ( |_ `  x )  +  1 )  -  1 ) ) )  =  ( ( log `  (
( |_ `  x
)  +  1 ) )  x.  (ψ `  x ) ) )
12512, 4mulcomd 9620 . . . . . . . . . . . . 13  |-  ( x  e.  RR+  ->  ( ( log `  ( ( |_ `  x )  +  1 ) )  x.  (ψ `  x
) )  =  ( (ψ `  x )  x.  ( log `  (
( |_ `  x
)  +  1 ) ) ) )
126124, 125eqtrd 2484 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  ( ( log `  ( ( |_ `  x )  +  1 ) )  x.  (ψ `  (
( ( |_ `  x )  +  1 )  -  1 ) ) )  =  ( (ψ `  x )  x.  ( log `  (
( |_ `  x
)  +  1 ) ) ) )
127 0cn 9591 . . . . . . . . . . . . . 14  |-  0  e.  CC
128127mul01i 9773 . . . . . . . . . . . . 13  |-  ( 0  x.  0 )  =  0
129128a1i 11 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  ( 0  x.  0 )  =  0 )
130126, 129oveq12d 6299 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( ( ( log `  (
( |_ `  x
)  +  1 ) )  x.  (ψ `  ( ( ( |_
`  x )  +  1 )  -  1 ) ) )  -  ( 0  x.  0 ) )  =  ( ( (ψ `  x
)  x.  ( log `  ( ( |_ `  x )  +  1 ) ) )  - 
0 ) )
13137subid1d 9925 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( ( (ψ `  x )  x.  ( log `  (
( |_ `  x
)  +  1 ) ) )  -  0 )  =  ( (ψ `  x )  x.  ( log `  ( ( |_
`  x )  +  1 ) ) ) )
132130, 131eqtrd 2484 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( ( ( log `  (
( |_ `  x
)  +  1 ) )  x.  (ψ `  ( ( ( |_
`  x )  +  1 )  -  1 ) ) )  -  ( 0  x.  0 ) )  =  ( (ψ `  x )  x.  ( log `  (
( |_ `  x
)  +  1 ) ) ) )
13389fveq2d 5860 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (ψ `  (
( n  +  1 )  -  1 ) )  =  (ψ `  n ) )
134133oveq2d 6297 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( log `  (
n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  ( (
n  +  1 )  -  1 ) ) )  =  ( ( ( log `  (
n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n )
) )
13585, 134sumeq12rdv 13511 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1..^ ( ( |_ `  x )  +  1 ) ) ( ( ( log `  ( n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  (
( n  +  1 )  -  1 ) ) )  =  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( log `  (
n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n )
) )
136132, 135oveq12d 6299 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( ( ( ( log `  (
( |_ `  x
)  +  1 ) )  x.  (ψ `  ( ( ( |_
`  x )  +  1 )  -  1 ) ) )  -  ( 0  x.  0 ) )  -  sum_ n  e.  ( 1..^ ( ( |_ `  x
)  +  1 ) ) ( ( ( log `  ( n  +  1 ) )  -  ( log `  n
) )  x.  (ψ `  ( ( n  + 
1 )  -  1 ) ) ) )  =  ( ( (ψ `  x )  x.  ( log `  ( ( |_
`  x )  +  1 ) ) )  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( log `  ( n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n
) ) ) )
13781, 116, 1363eqtr3d 2492 . . . . . . . 8  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( log `  n ) )  =  ( ( (ψ `  x )  x.  ( log `  ( ( |_
`  x )  +  1 ) ) )  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( log `  ( n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n
) ) ) )
138137oveq1d 6296 . . . . . . 7  |-  ( x  e.  RR+  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  ( log `  n ) )  -  ( (ψ `  x )  x.  ( log `  x ) ) )  =  ( ( ( (ψ `  x
)  x.  ( log `  ( ( |_ `  x )  +  1 ) ) )  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( log `  (
n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n )
) )  -  (
(ψ `  x )  x.  ( log `  x
) ) ) )
13939, 41, 1383eqtr4d 2494 . . . . . 6  |-  ( x  e.  RR+  ->  ( ( (ψ `  x )  x.  ( ( log `  (
( |_ `  x
)  +  1 ) )  -  ( log `  x ) ) )  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( log `  ( n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n
) ) )  =  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  n
)  x.  ( log `  n ) )  -  ( (ψ `  x )  x.  ( log `  x
) ) ) )
140139oveq1d 6296 . . . . 5  |-  ( x  e.  RR+  ->  ( ( ( (ψ `  x
)  x.  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x
) ) )  -  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( log `  (
n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n )
) )  /  x
)  =  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( log `  n
) )  -  (
(ψ `  x )  x.  ( log `  x
) ) )  /  x ) )
141 div23 10233 . . . . . . 7  |-  ( ( (ψ `  x )  e.  CC  /\  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x
) )  e.  CC  /\  ( x  e.  CC  /\  x  =/=  0 ) )  ->  ( (
(ψ `  x )  x.  ( ( log `  (
( |_ `  x
)  +  1 ) )  -  ( log `  x ) ) )  /  x )  =  ( ( (ψ `  x )  /  x
)  x.  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x
) ) ) )
1424, 15, 34, 141syl3anc 1229 . . . . . 6  |-  ( x  e.  RR+  ->  ( ( (ψ `  x )  x.  ( ( log `  (
( |_ `  x
)  +  1 ) )  -  ( log `  x ) ) )  /  x )  =  ( ( (ψ `  x )  /  x
)  x.  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x
) ) ) )
143142oveq1d 6296 . . . . 5  |-  ( x  e.  RR+  ->  ( ( ( (ψ `  x
)  x.  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x
) ) )  /  x )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( log `  (
n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n )
)  /  x ) )  =  ( ( ( (ψ `  x
)  /  x )  x.  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x ) ) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( log `  (
n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n )
)  /  x ) ) )
14436, 140, 1433eqtr3rd 2493 . . . 4  |-  ( x  e.  RR+  ->  ( ( ( (ψ `  x
)  /  x )  x.  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x ) ) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( log `  (
n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n )
)  /  x ) )  =  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( log `  n
) )  -  (
(ψ `  x )  x.  ( log `  x
) ) )  /  x ) )
145144mpteq2ia 4519 . . 3  |-  ( x  e.  RR+  |->  ( ( ( (ψ `  x
)  /  x )  x.  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x ) ) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( log `  (
n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n )
)  /  x ) ) )  =  ( x  e.  RR+  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( log `  n
) )  -  (
(ψ `  x )  x.  ( log `  x
) ) )  /  x ) )
146 ovex 6309 . . . . 5  |-  ( ( (ψ `  x )  /  x )  x.  (
( log `  (
( |_ `  x
)  +  1 ) )  -  ( log `  x ) ) )  e.  _V
147146a1i 11 . . . 4  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( ( (ψ `  x )  /  x )  x.  (
( log `  (
( |_ `  x
)  +  1 ) )  -  ( log `  x ) ) )  e.  _V )
148 ovex 6309 . . . . 5  |-  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( log `  (
n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n )
)  /  x )  e.  _V
149148a1i 11 . . . 4  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( log `  (
n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n )
)  /  x )  e.  _V )
150 reex 9586 . . . . . . . 8  |-  RR  e.  _V
151 rpssre 11241 . . . . . . . 8  |-  RR+  C_  RR
152150, 151ssexi 4582 . . . . . . 7  |-  RR+  e.  _V
153152a1i 11 . . . . . 6  |-  ( T. 
->  RR+  e.  _V )
154 ovex 6309 . . . . . . 7  |-  ( (ψ `  x )  /  x
)  e.  _V
155154a1i 11 . . . . . 6  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( (ψ `  x )  /  x
)  e.  _V )
15615adantl 466 . . . . . 6  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x
) )  e.  CC )
157 eqidd 2444 . . . . . 6  |-  ( T. 
->  ( x  e.  RR+  |->  ( (ψ `  x )  /  x ) )  =  ( x  e.  RR+  |->  ( (ψ `  x )  /  x ) ) )
158 eqidd 2444 . . . . . 6  |-  ( T. 
->  ( x  e.  RR+  |->  ( ( log `  (
( |_ `  x
)  +  1 ) )  -  ( log `  x ) ) )  =  ( x  e.  RR+  |->  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x ) ) ) )
159153, 155, 156, 157, 158offval2 6541 . . . . 5  |-  ( T. 
->  ( ( x  e.  RR+  |->  ( (ψ `  x )  /  x
) )  oF  x.  ( x  e.  RR+  |->  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x ) ) ) )  =  ( x  e.  RR+  |->  ( ( (ψ `  x )  /  x )  x.  (
( log `  (
( |_ `  x
)  +  1 ) )  -  ( log `  x ) ) ) ) )
160 chpo1ub 23643 . . . . . 6  |-  ( x  e.  RR+  |->  ( (ψ `  x )  /  x
) )  e.  O(1)
161 0red 9600 . . . . . . . 8  |-  ( T. 
->  0  e.  RR )
162 1red 9614 . . . . . . . 8  |-  ( T. 
->  1  e.  RR )
163 divrcnv 13646 . . . . . . . . 9  |-  ( 1  e.  CC  ->  (
x  e.  RR+  |->  ( 1  /  x ) )  ~~> r  0 )
16487, 163mp1i 12 . . . . . . . 8  |-  ( T. 
->  ( x  e.  RR+  |->  ( 1  /  x
) )  ~~> r  0 )
165 rpreccl 11254 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( 1  /  x )  e.  RR+ )
166165rpred 11267 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( 1  /  x )  e.  RR )
167166adantl 466 . . . . . . . 8  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( 1  /  x )  e.  RR )
16811, 13resubcld 9994 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x
) )  e.  RR )
169168adantl 466 . . . . . . . 8  |-  ( ( T.  /\  x  e.  RR+ )  ->  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x
) )  e.  RR )
170 rpaddcl 11251 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  1  e.  RR+ )  ->  (
x  +  1 )  e.  RR+ )
17121, 170mpan2 671 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  ( x  +  1 )  e.  RR+ )
172171relogcld 22986 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( log `  ( x  +  1 ) )  e.  RR )
173172, 13resubcld 9994 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( ( log `  ( x  +  1 ) )  -  ( log `  x
) )  e.  RR )
1747nn0red 10860 . . . . . . . . . . . . 13  |-  ( x  e.  RR+  ->  ( |_
`  x )  e.  RR )
175 1red 9614 . . . . . . . . . . . . 13  |-  ( x  e.  RR+  ->  1  e.  RR )
176 flle 11918 . . . . . . . . . . . . . 14  |-  ( x  e.  RR  ->  ( |_ `  x )  <_  x )
1771, 176syl 16 . . . . . . . . . . . . 13  |-  ( x  e.  RR+  ->  ( |_
`  x )  <_  x )
178174, 1, 175, 177leadd1dd 10173 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  ( ( |_ `  x )  +  1 )  <_ 
( x  +  1 ) )
17910, 171logled 22990 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  ( ( ( |_ `  x
)  +  1 )  <_  ( x  + 
1 )  <->  ( log `  ( ( |_ `  x )  +  1 ) )  <_  ( log `  ( x  + 
1 ) ) ) )
180178, 179mpbid 210 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( log `  ( ( |_ `  x )  +  1 ) )  <_  ( log `  ( x  + 
1 ) ) )
18111, 172, 13, 180lesub1dd 10175 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x
) )  <_  (
( log `  (
x  +  1 ) )  -  ( log `  x ) ) )
182 logdifbnd 23301 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( ( log `  ( x  +  1 ) )  -  ( log `  x
) )  <_  (
1  /  x ) )
183168, 173, 166, 181, 182letrd 9742 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x
) )  <_  (
1  /  x ) )
184183ad2antrl 727 . . . . . . . 8  |-  ( ( T.  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( log `  (
( |_ `  x
)  +  1 ) )  -  ( log `  x ) )  <_ 
( 1  /  x
) )
185 fllep1 11920 . . . . . . . . . . . 12  |-  ( x  e.  RR  ->  x  <_  ( ( |_ `  x )  +  1 ) )
1861, 185syl 16 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  x  <_ 
( ( |_ `  x )  +  1 ) )
187 logleb 22966 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  (
( |_ `  x
)  +  1 )  e.  RR+ )  ->  (
x  <_  ( ( |_ `  x )  +  1 )  <->  ( log `  x )  <_  ( log `  ( ( |_
`  x )  +  1 ) ) ) )
18810, 187mpdan 668 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( x  <_  ( ( |_
`  x )  +  1 )  <->  ( log `  x )  <_  ( log `  ( ( |_
`  x )  +  1 ) ) ) )
189186, 188mpbid 210 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( log `  x )  <_  ( log `  ( ( |_
`  x )  +  1 ) ) )
19011, 13subge0d 10149 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( 0  <_  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x ) )  <-> 
( log `  x
)  <_  ( log `  ( ( |_ `  x )  +  1 ) ) ) )
191189, 190mpbird 232 . . . . . . . . 9  |-  ( x  e.  RR+  ->  0  <_ 
( ( log `  (
( |_ `  x
)  +  1 ) )  -  ( log `  x ) ) )
192191ad2antrl 727 . . . . . . . 8  |-  ( ( T.  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
0  <_  ( ( log `  ( ( |_
`  x )  +  1 ) )  -  ( log `  x ) ) )
193161, 162, 164, 167, 169, 184, 192rlimsqz2 13455 . . . . . . 7  |-  ( T. 
->  ( x  e.  RR+  |->  ( ( log `  (
( |_ `  x
)  +  1 ) )  -  ( log `  x ) ) )  ~~> r  0 )
194 rlimo1 13421 . . . . . . 7  |-  ( ( x  e.  RR+  |->  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x
) ) )  ~~> r  0  ->  ( x  e.  RR+  |->  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x ) ) )  e.  O(1) )
195193, 194syl 16 . . . . . 6  |-  ( T. 
->  ( x  e.  RR+  |->  ( ( log `  (
( |_ `  x
)  +  1 ) )  -  ( log `  x ) ) )  e.  O(1) )
196 o1mul 13419 . . . . . 6  |-  ( ( ( x  e.  RR+  |->  ( (ψ `  x )  /  x ) )  e.  O(1)  /\  ( x  e.  RR+  |->  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x ) ) )  e.  O(1) )  -> 
( ( x  e.  RR+  |->  ( (ψ `  x )  /  x
) )  oF  x.  ( x  e.  RR+  |->  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x ) ) ) )  e.  O(1) )
197160, 195, 196sylancr 663 . . . . 5  |-  ( T. 
->  ( ( x  e.  RR+  |->  ( (ψ `  x )  /  x
) )  oF  x.  ( x  e.  RR+  |->  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x ) ) ) )  e.  O(1) )
198159, 197eqeltrrd 2532 . . . 4  |-  ( T. 
->  ( x  e.  RR+  |->  ( ( (ψ `  x )  /  x
)  x.  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x
) ) ) )  e.  O(1) )
199 nnrp 11240 . . . . . . . . 9  |-  ( m  e.  NN  ->  m  e.  RR+ )
200199ssriv 3493 . . . . . . . 8  |-  NN  C_  RR+
201200a1i 11 . . . . . . 7  |-  ( T. 
->  NN  C_  RR+ )
202201sselda 3489 . . . . . 6  |-  ( ( T.  /\  n  e.  NN )  ->  n  e.  RR+ )
203202, 31syl 16 . . . . 5  |-  ( ( T.  /\  n  e.  NN )  ->  (
( ( log `  (
n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n )
)  e.  CC )
204 chpo1ub 23643 . . . . . . . 8  |-  ( n  e.  RR+  |->  ( (ψ `  n )  /  n
) )  e.  O(1)
205204a1i 11 . . . . . . 7  |-  ( T. 
->  ( n  e.  RR+  |->  ( (ψ `  n )  /  n ) )  e.  O(1) )
206 rerpdivcl 11258 . . . . . . . . 9  |-  ( ( (ψ `  n )  e.  RR  /\  n  e.  RR+ )  ->  ( (ψ `  n )  /  n
)  e.  RR )
20729, 206mpancom 669 . . . . . . . 8  |-  ( n  e.  RR+  ->  ( (ψ `  n )  /  n
)  e.  RR )
208207adantl 466 . . . . . . 7  |-  ( ( T.  /\  n  e.  RR+ )  ->  ( (ψ `  n )  /  n
)  e.  RR )
20931adantl 466 . . . . . . 7  |-  ( ( T.  /\  n  e.  RR+ )  ->  ( ( ( log `  (
n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n )
)  e.  CC )
210 rpreccl 11254 . . . . . . . . . . 11  |-  ( n  e.  RR+  ->  ( 1  /  n )  e.  RR+ )
211210rpred 11267 . . . . . . . . . 10  |-  ( n  e.  RR+  ->  ( 1  /  n )  e.  RR )
212 chpge0 23378 . . . . . . . . . . 11  |-  ( n  e.  RR  ->  0  <_  (ψ `  n )
)
21327, 212syl 16 . . . . . . . . . 10  |-  ( n  e.  RR+  ->  0  <_ 
(ψ `  n )
)
214 logdifbnd 23301 . . . . . . . . . 10  |-  ( n  e.  RR+  ->  ( ( log `  ( n  +  1 ) )  -  ( log `  n
) )  <_  (
1  /  n ) )
21526, 211, 29, 213, 214lemul1ad 10492 . . . . . . . . 9  |-  ( n  e.  RR+  ->  ( ( ( log `  (
n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n )
)  <_  ( (
1  /  n )  x.  (ψ `  n
) ) )
21627lep1d 10484 . . . . . . . . . . . . 13  |-  ( n  e.  RR+  ->  n  <_ 
( n  +  1 ) )
217 logleb 22966 . . . . . . . . . . . . . 14  |-  ( ( n  e.  RR+  /\  (
n  +  1 )  e.  RR+ )  ->  (
n  <_  ( n  +  1 )  <->  ( log `  n )  <_  ( log `  ( n  + 
1 ) ) ) )
21823, 217mpdan 668 . . . . . . . . . . . . 13  |-  ( n  e.  RR+  ->  ( n  <_  ( n  + 
1 )  <->  ( log `  n )  <_  ( log `  ( n  + 
1 ) ) ) )
219216, 218mpbid 210 . . . . . . . . . . . 12  |-  ( n  e.  RR+  ->  ( log `  n )  <_  ( log `  ( n  + 
1 ) ) )
22024, 25subge0d 10149 . . . . . . . . . . . 12  |-  ( n  e.  RR+  ->  ( 0  <_  ( ( log `  ( n  +  1 ) )  -  ( log `  n ) )  <-> 
( log `  n
)  <_  ( log `  ( n  +  1 ) ) ) )
221219, 220mpbird 232 . . . . . . . . . . 11  |-  ( n  e.  RR+  ->  0  <_ 
( ( log `  (
n  +  1 ) )  -  ( log `  n ) ) )
22226, 29, 221, 213mulge0d 10136 . . . . . . . . . 10  |-  ( n  e.  RR+  ->  0  <_ 
( ( ( log `  ( n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n
) ) )
22330, 222absidd 13236 . . . . . . . . 9  |-  ( n  e.  RR+  ->  ( abs `  ( ( ( log `  ( n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n
) ) )  =  ( ( ( log `  ( n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n
) ) )
224 rpregt0 11244 . . . . . . . . . . . 12  |-  ( n  e.  RR+  ->  ( n  e.  RR  /\  0  <  n ) )
225 divge0 10418 . . . . . . . . . . . 12  |-  ( ( ( (ψ `  n
)  e.  RR  /\  0  <_  (ψ `  n
) )  /\  (
n  e.  RR  /\  0  <  n ) )  ->  0  <_  (
(ψ `  n )  /  n ) )
22629, 213, 224, 225syl21anc 1228 . . . . . . . . . . 11  |-  ( n  e.  RR+  ->  0  <_ 
( (ψ `  n
)  /  n ) )
227207, 226absidd 13236 . . . . . . . . . 10  |-  ( n  e.  RR+  ->  ( abs `  ( (ψ `  n
)  /  n ) )  =  ( (ψ `  n )  /  n
) )
22829recnd 9625 . . . . . . . . . . 11  |-  ( n  e.  RR+  ->  (ψ `  n )  e.  CC )
229 rpcn 11239 . . . . . . . . . . 11  |-  ( n  e.  RR+  ->  n  e.  CC )
230 rpne0 11246 . . . . . . . . . . 11  |-  ( n  e.  RR+  ->  n  =/=  0 )
231228, 229, 230divrec2d 10331 . . . . . . . . . 10  |-  ( n  e.  RR+  ->  ( (ψ `  n )  /  n
)  =  ( ( 1  /  n )  x.  (ψ `  n
) ) )
232227, 231eqtrd 2484 . . . . . . . . 9  |-  ( n  e.  RR+  ->  ( abs `  ( (ψ `  n
)  /  n ) )  =  ( ( 1  /  n )  x.  (ψ `  n
) ) )
233215, 223, 2323brtr4d 4467 . . . . . . . 8  |-  ( n  e.  RR+  ->  ( abs `  ( ( ( log `  ( n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n
) ) )  <_ 
( abs `  (
(ψ `  n )  /  n ) ) )
234233ad2antrl 727 . . . . . . 7  |-  ( ( T.  /\  ( n  e.  RR+  /\  1  <_  n ) )  -> 
( abs `  (
( ( log `  (
n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n )
) )  <_  ( abs `  ( (ψ `  n )  /  n
) ) )
235162, 205, 208, 209, 234o1le 13457 . . . . . 6  |-  ( T. 
->  ( n  e.  RR+  |->  ( ( ( log `  ( n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n
) ) )  e.  O(1) )
236201, 235o1res2 13368 . . . . 5  |-  ( T. 
->  ( n  e.  NN  |->  ( ( ( log `  ( n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n
) ) )  e.  O(1) )
237203, 236o1fsum 13609 . . . 4  |-  ( T. 
->  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( log `  ( n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n
) )  /  x
) )  e.  O(1) )
238147, 149, 198, 237o1sub2 13430 . . 3  |-  ( T. 
->  ( x  e.  RR+  |->  ( ( ( (ψ `  x )  /  x
)  x.  ( ( log `  ( ( |_ `  x )  +  1 ) )  -  ( log `  x
) ) )  -  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( log `  ( n  +  1 ) )  -  ( log `  n ) )  x.  (ψ `  n
) )  /  x
) ) )  e.  O(1) )
239145, 238syl5eqelr 2536 . 2  |-  ( T. 
->  ( x  e.  RR+  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( log `  n ) )  -  ( (ψ `  x )  x.  ( log `  x
) ) )  /  x ) )  e.  O(1) )
240239trud 1392 1  |-  ( x  e.  RR+  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( log `  n
) )  -  (
(ψ `  x )  x.  ( log `  x
) ) )  /  x ) )  e.  O(1)
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    = wceq 1383   T. wtru 1384    e. wcel 1804    =/= wne 2638   _Vcvv 3095    C_ wss 3461   class class class wbr 4437    |-> cmpt 4495   ` cfv 5578  (class class class)co 6281    oFcof 6523   CCcc 9493   RRcr 9494   0cc0 9495   1c1 9496    + caddc 9498    x. cmul 9500    < clt 9631    <_ cle 9632    - cmin 9810    / cdiv 10213   NNcn 10543   2c2 10592   NN0cn0 10802   ZZcz 10871   ZZ>=cuz 11092   RR+crp 11231   ...cfz 11683  ..^cfzo 11806   |_cfl 11909   abscabs 13049    ~~> r crli 13290   O(1)co1 13291   sum_csu 13490   logclog 22920  Λcvma 23343  ψcchp 23344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-inf2 8061  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572  ax-pre-sup 9573  ax-addf 9574  ax-mulf 9575
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-fal 1389  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-iin 4318  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-se 4829  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-isom 5587  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-of 6525  df-om 6686  df-1st 6785  df-2nd 6786  df-supp 6904  df-recs 7044  df-rdg 7078  df-1o 7132  df-2o 7133  df-oadd 7136  df-er 7313  df-map 7424  df-pm 7425  df-ixp 7472  df-en 7519  df-dom 7520  df-sdom 7521  df-fin 7522  df-fsupp 7832  df-fi 7873  df-sup 7903  df-oi 7938  df-card 8323  df-cda 8551  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-div 10214  df-nn 10544  df-2 10601  df-3 10602  df-4 10603  df-5 10604  df-6 10605  df-7 10606  df-8 10607  df-9 10608  df-10 10609  df-n0 10803  df-z 10872  df-dec 10987  df-uz 11093  df-q 11194  df-rp 11232  df-xneg 11329  df-xadd 11330  df-xmul 11331  df-ioo 11544  df-ioc 11545  df-ico 11546  df-icc 11547  df-fz 11684  df-fzo 11807  df-fl 11911  df-mod 11979  df-seq 12090  df-exp 12149  df-fac 12336  df-bc 12363  df-hash 12388  df-shft 12882  df-cj 12914  df-re 12915  df-im 12916  df-sqrt 13050  df-abs 13051  df-limsup 13276  df-clim 13293  df-rlim 13294  df-o1 13295  df-lo1 13296  df-sum 13491  df-ef 13785  df-e 13786  df-sin 13787  df-cos 13788  df-pi 13790  df-dvds 13969  df-gcd 14127  df-prm 14200  df-pc 14343  df-struct 14616  df-ndx 14617  df-slot 14618  df-base 14619  df-sets 14620  df-ress 14621  df-plusg 14692  df-mulr 14693  df-starv 14694  df-sca 14695  df-vsca 14696  df-ip 14697  df-tset 14698  df-ple 14699  df-ds 14701  df-unif 14702  df-hom 14703  df-cco 14704  df-rest 14802  df-topn 14803  df-0g 14821  df-gsum 14822  df-topgen 14823  df-pt 14824  df-prds 14827  df-xrs 14881  df-qtop 14886  df-imas 14887  df-xps 14889  df-mre 14965  df-mrc 14966  df-acs 14968  df-mgm 15851  df-sgrp 15890  df-mnd 15900  df-submnd 15946  df-mulg 16039  df-cntz 16334  df-cmn 16779  df-psmet 18390  df-xmet 18391  df-met 18392  df-bl 18393  df-mopn 18394  df-fbas 18395  df-fg 18396  df-cnfld 18400  df-top 19377  df-bases 19379  df-topon 19380  df-topsp 19381  df-cld 19498  df-ntr 19499  df-cls 19500  df-nei 19577  df-lp 19615  df-perf 19616  df-cn 19706  df-cnp 19707  df-haus 19794  df-tx 20041  df-hmeo 20234  df-fil 20325  df-fm 20417  df-flim 20418  df-flf 20419  df-xms 20801  df-ms 20802  df-tms 20803  df-cncf 21360  df-limc 22248  df-dv 22249  df-log 22922  df-cxp 22923  df-cht 23348  df-vma 23349  df-chp 23350  df-ppi 23351
This theorem is referenced by:  selberg2  23714  selberg3lem2  23721
  Copyright terms: Public domain W3C validator