MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  selberg Structured version   Unicode version

Theorem selberg 23599
Description: Selberg's symmetry formula. The statement has many forms, and this one is equivalent to the statement that  sum_
n  <_  x , Λ ( n ) log n  +  sum_ m  x.  n  <_  x , Λ ( m )Λ ( n )  =  2 x log x  +  O
( x ). Equation 10.4.10 of [Shapiro], p. 419. (Contributed by Mario Carneiro, 23-May-2016.)
Assertion
Ref Expression
selberg  |-  ( x  e.  RR+  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( ( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )  e.  O(1)
Distinct variable group:    x, n

Proof of Theorem selberg
Dummy variables  d  m  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5872 . . . . . . . . . . . . 13  |-  ( n  =  d  ->  (Λ `  n )  =  (Λ `  d ) )
2 oveq2 6303 . . . . . . . . . . . . . 14  |-  ( n  =  d  ->  (
x  /  n )  =  ( x  / 
d ) )
32fveq2d 5876 . . . . . . . . . . . . 13  |-  ( n  =  d  ->  (ψ `  ( x  /  n
) )  =  (ψ `  ( x  /  d
) ) )
41, 3oveq12d 6313 . . . . . . . . . . . 12  |-  ( n  =  d  ->  (
(Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  =  ( (Λ `  d
)  x.  (ψ `  ( x  /  d
) ) ) )
54cbvsumv 13498 . . . . . . . . . . 11  |-  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  = 
sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  d
)  x.  (ψ `  ( x  /  d
) ) )
6 fzfid 12063 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1 ... ( |_ `  ( x  /  d
) ) )  e. 
Fin )
7 elfznn 11726 . . . . . . . . . . . . . . . . 17  |-  ( d  e.  ( 1 ... ( |_ `  x
) )  ->  d  e.  NN )
87adantl 466 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  e.  NN )
9 vmacl 23258 . . . . . . . . . . . . . . . 16  |-  ( d  e.  NN  ->  (Λ `  d )  e.  RR )
108, 9syl 16 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  d
)  e.  RR )
1110recnd 9634 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  d
)  e.  CC )
12 elfznn 11726 . . . . . . . . . . . . . . . . 17  |-  ( m  e.  ( 1 ... ( |_ `  (
x  /  d ) ) )  ->  m  e.  NN )
1312adantl 466 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  m  e.  NN )
14 vmacl 23258 . . . . . . . . . . . . . . . 16  |-  ( m  e.  NN  ->  (Λ `  m )  e.  RR )
1513, 14syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  (Λ `  m
)  e.  RR )
1615recnd 9634 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  (Λ `  m
)  e.  CC )
176, 11, 16fsummulc2 13579 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  d )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  d ) ) ) (Λ `  m
) )  =  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  d ) ) ) ( (Λ `  d )  x.  (Λ `  m ) ) )
187nnrpd 11267 . . . . . . . . . . . . . . . . 17  |-  ( d  e.  ( 1 ... ( |_ `  x
) )  ->  d  e.  RR+ )
19 rpdivcl 11254 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR+  /\  d  e.  RR+ )  ->  (
x  /  d )  e.  RR+ )
2018, 19sylan2 474 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  d )  e.  RR+ )
2120rpred 11268 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  d )  e.  RR )
22 chpval 23262 . . . . . . . . . . . . . . 15  |-  ( ( x  /  d )  e.  RR  ->  (ψ `  ( x  /  d
) )  =  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  d ) ) ) (Λ `  m
) )
2321, 22syl 16 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  (ψ `  (
x  /  d ) )  =  sum_ m  e.  ( 1 ... ( |_ `  ( x  / 
d ) ) ) (Λ `  m )
)
2423oveq2d 6311 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  d )  x.  (ψ `  ( x  /  d
) ) )  =  ( (Λ `  d
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  / 
d ) ) ) (Λ `  m )
) )
2513nncnd 10564 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  m  e.  CC )
267ad2antlr 726 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  d  e.  NN )
2726nncnd 10564 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  d  e.  CC )
2826nnne0d 10592 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  d  =/=  0 )
2925, 27, 28divcan3d 10337 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( (
d  x.  m )  /  d )  =  m )
3029fveq2d 5876 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  (Λ `  (
( d  x.  m
)  /  d ) )  =  (Λ `  m
) )
3130oveq2d 6311 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( (Λ `  d )  x.  (Λ `  ( ( d  x.  m )  /  d
) ) )  =  ( (Λ `  d
)  x.  (Λ `  m
) ) )
3231sumeq2dv 13505 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  / 
d ) ) ) ( (Λ `  d
)  x.  (Λ `  (
( d  x.  m
)  /  d ) ) )  =  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  d ) ) ) ( (Λ `  d )  x.  (Λ `  m ) ) )
3317, 24, 323eqtr4d 2518 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  d )  x.  (ψ `  ( x  /  d
) ) )  = 
sum_ m  e.  (
1 ... ( |_ `  ( x  /  d
) ) ) ( (Λ `  d )  x.  (Λ `  ( (
d  x.  m )  /  d ) ) ) )
3433sumeq2dv 13505 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  d
)  x.  (ψ `  ( x  /  d
) ) )  = 
sum_ d  e.  ( 1 ... ( |_
`  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  d
) ) ) ( (Λ `  d )  x.  (Λ `  ( (
d  x.  m )  /  d ) ) ) )
355, 34syl5eq 2520 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  = 
sum_ d  e.  ( 1 ... ( |_
`  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  d
) ) ) ( (Λ `  d )  x.  (Λ `  ( (
d  x.  m )  /  d ) ) ) )
36 oveq1 6302 . . . . . . . . . . . . 13  |-  ( n  =  ( d  x.  m )  ->  (
n  /  d )  =  ( ( d  x.  m )  / 
d ) )
3736fveq2d 5876 . . . . . . . . . . . 12  |-  ( n  =  ( d  x.  m )  ->  (Λ `  ( n  /  d
) )  =  (Λ `  ( ( d  x.  m )  /  d
) ) )
3837oveq2d 6311 . . . . . . . . . . 11  |-  ( n  =  ( d  x.  m )  ->  (
(Λ `  d )  x.  (Λ `  ( n  /  d ) ) )  =  ( (Λ `  d )  x.  (Λ `  ( ( d  x.  m )  /  d
) ) ) )
39 rpre 11238 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  x  e.  RR )
40 ssrab2 3590 . . . . . . . . . . . . . . . . 17  |-  { y  e.  NN  |  y 
||  n }  C_  NN
41 simprr 756 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR+  /\  (
n  e.  ( 1 ... ( |_ `  x ) )  /\  d  e.  { y  e.  NN  |  y  ||  n } ) )  -> 
d  e.  { y  e.  NN  |  y 
||  n } )
4240, 41sseldi 3507 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR+  /\  (
n  e.  ( 1 ... ( |_ `  x ) )  /\  d  e.  { y  e.  NN  |  y  ||  n } ) )  -> 
d  e.  NN )
4342anassrs 648 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  d  e.  {
y  e.  NN  | 
y  ||  n }
)  ->  d  e.  NN )
4443, 9syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  d  e.  {
y  e.  NN  | 
y  ||  n }
)  ->  (Λ `  d
)  e.  RR )
45 elfznn 11726 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  NN )
4645adantl 466 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
47 dvdsdivcl 23323 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  NN  /\  d  e.  { y  e.  NN  |  y  ||  n } )  ->  (
n  /  d )  e.  { y  e.  NN  |  y  ||  n } )
4846, 47sylan 471 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  d  e.  {
y  e.  NN  | 
y  ||  n }
)  ->  ( n  /  d )  e. 
{ y  e.  NN  |  y  ||  n }
)
4940, 48sseldi 3507 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  d  e.  {
y  e.  NN  | 
y  ||  n }
)  ->  ( n  /  d )  e.  NN )
50 vmacl 23258 . . . . . . . . . . . . . . 15  |-  ( ( n  /  d )  e.  NN  ->  (Λ `  ( n  /  d
) )  e.  RR )
5149, 50syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  d  e.  {
y  e.  NN  | 
y  ||  n }
)  ->  (Λ `  (
n  /  d ) )  e.  RR )
5244, 51remulcld 9636 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  d  e.  {
y  e.  NN  | 
y  ||  n }
)  ->  ( (Λ `  d )  x.  (Λ `  ( n  /  d
) ) )  e.  RR )
5352recnd 9634 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  d  e.  {
y  e.  NN  | 
y  ||  n }
)  ->  ( (Λ `  d )  x.  (Λ `  ( n  /  d
) ) )  e.  CC )
5453anasss 647 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  (
n  e.  ( 1 ... ( |_ `  x ) )  /\  d  e.  { y  e.  NN  |  y  ||  n } ) )  -> 
( (Λ `  d )  x.  (Λ `  ( n  /  d ) ) )  e.  CC )
5538, 39, 54dvdsflsumcom 23330 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) )
sum_ d  e.  {
y  e.  NN  | 
y  ||  n } 
( (Λ `  d )  x.  (Λ `  ( n  /  d ) ) )  =  sum_ d  e.  ( 1 ... ( |_ `  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  d
) ) ) ( (Λ `  d )  x.  (Λ `  ( (
d  x.  m )  /  d ) ) ) )
5635, 55eqtr4d 2511 . . . . . . . . 9  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  = 
sum_ n  e.  (
1 ... ( |_ `  x ) ) sum_ d  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  d )  x.  (Λ `  ( n  /  d
) ) ) )
5756oveq1d 6310 . . . . . . . 8  |-  ( x  e.  RR+  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n
) ) )  + 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( log `  n
) ) )  =  ( sum_ n  e.  ( 1 ... ( |_
`  x ) )
sum_ d  e.  {
y  e.  NN  | 
y  ||  n } 
( (Λ `  d )  x.  (Λ `  ( n  /  d ) ) )  +  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( log `  n ) ) ) )
58 fzfid 12063 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( 1 ... ( |_ `  x ) )  e. 
Fin )
59 vmacl 23258 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  (Λ `  n )  e.  RR )
6046, 59syl 16 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  n
)  e.  RR )
6160recnd 9634 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  n
)  e.  CC )
6245nnrpd 11267 . . . . . . . . . . . . . 14  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  RR+ )
63 rpdivcl 11254 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR+  /\  n  e.  RR+ )  ->  (
x  /  n )  e.  RR+ )
6462, 63sylan2 474 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR+ )
6564rpred 11268 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR )
66 chpcl 23264 . . . . . . . . . . . 12  |-  ( ( x  /  n )  e.  RR  ->  (ψ `  ( x  /  n
) )  e.  RR )
6765, 66syl 16 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (ψ `  (
x  /  n ) )  e.  RR )
6867recnd 9634 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (ψ `  (
x  /  n ) )  e.  CC )
6961, 68mulcld 9628 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  (ψ `  ( x  /  n
) ) )  e.  CC )
7046nnrpd 11267 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  RR+ )
71 relogcl 22829 . . . . . . . . . . . 12  |-  ( n  e.  RR+  ->  ( log `  n )  e.  RR )
7270, 71syl 16 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  n )  e.  RR )
7372recnd 9634 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  n )  e.  CC )
7461, 73mulcld 9628 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  ( log `  n ) )  e.  CC )
7558, 69, 74fsumadd 13541 . . . . . . . 8  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  +  ( (Λ `  n
)  x.  ( log `  n ) ) )  =  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  + 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( log `  n
) ) ) )
76 fzfid 12063 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1 ... n )  e. 
Fin )
77 sgmss 23246 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  { y  e.  NN  |  y 
||  n }  C_  ( 1 ... n
) )
7846, 77syl 16 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  { y  e.  NN  |  y  ||  n }  C_  ( 1 ... n ) )
79 ssfi 7752 . . . . . . . . . . . 12  |-  ( ( ( 1 ... n
)  e.  Fin  /\  { y  e.  NN  | 
y  ||  n }  C_  ( 1 ... n
) )  ->  { y  e.  NN  |  y 
||  n }  e.  Fin )
8076, 78, 79syl2anc 661 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  { y  e.  NN  |  y  ||  n }  e.  Fin )
8180, 52fsumrecl 13536 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ d  e. 
{ y  e.  NN  |  y  ||  n } 
( (Λ `  d )  x.  (Λ `  ( n  /  d ) ) )  e.  RR )
8281recnd 9634 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ d  e. 
{ y  e.  NN  |  y  ||  n } 
( (Λ `  d )  x.  (Λ `  ( n  /  d ) ) )  e.  CC )
8358, 82, 74fsumadd 13541 . . . . . . . 8  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( sum_ d  e.  {
y  e.  NN  | 
y  ||  n } 
( (Λ `  d )  x.  (Λ `  ( n  /  d ) ) )  +  ( (Λ `  n )  x.  ( log `  n ) ) )  =  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) sum_ d  e.  { y  e.  NN  |  y  ||  n } 
( (Λ `  d )  x.  (Λ `  ( n  /  d ) ) )  +  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( log `  n ) ) ) )
8457, 75, 833eqtr4d 2518 . . . . . . 7  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  +  ( (Λ `  n
)  x.  ( log `  n ) ) )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( sum_ d  e.  {
y  e.  NN  | 
y  ||  n } 
( (Λ `  d )  x.  (Λ `  ( n  /  d ) ) )  +  ( (Λ `  n )  x.  ( log `  n ) ) ) )
8573, 68addcomd 9793 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( log `  n )  +  (ψ `  ( x  /  n ) ) )  =  ( (ψ `  ( x  /  n
) )  +  ( log `  n ) ) )
8685oveq2d 6311 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  (
( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  =  ( (Λ `  n
)  x.  ( (ψ `  ( x  /  n
) )  +  ( log `  n ) ) ) )
8761, 68, 73adddid 9632 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  (
(ψ `  ( x  /  n ) )  +  ( log `  n
) ) )  =  ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  +  ( (Λ `  n
)  x.  ( log `  n ) ) ) )
8886, 87eqtrd 2508 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  (
( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  =  ( ( (Λ `  n )  x.  (ψ `  ( x  /  n
) ) )  +  ( (Λ `  n
)  x.  ( log `  n ) ) ) )
8988sumeq2dv 13505 . . . . . . 7  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  = 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  +  ( (Λ `  n
)  x.  ( log `  n ) ) ) )
90 logsqvma2 23594 . . . . . . . . 9  |-  ( n  e.  NN  ->  sum_ d  e.  { y  e.  NN  |  y  ||  n } 
( ( mmu `  d )  x.  (
( log `  (
n  /  d ) ) ^ 2 ) )  =  ( sum_ d  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  d )  x.  (Λ `  ( n  /  d
) ) )  +  ( (Λ `  n
)  x.  ( log `  n ) ) ) )
9146, 90syl 16 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ d  e. 
{ y  e.  NN  |  y  ||  n } 
( ( mmu `  d )  x.  (
( log `  (
n  /  d ) ) ^ 2 ) )  =  ( sum_ d  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  d )  x.  (Λ `  ( n  /  d
) ) )  +  ( (Λ `  n
)  x.  ( log `  n ) ) ) )
9291sumeq2dv 13505 . . . . . . 7  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) )
sum_ d  e.  {
y  e.  NN  | 
y  ||  n } 
( ( mmu `  d )  x.  (
( log `  (
n  /  d ) ) ^ 2 ) )  =  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( sum_ d  e.  {
y  e.  NN  | 
y  ||  n } 
( (Λ `  d )  x.  (Λ `  ( n  /  d ) ) )  +  ( (Λ `  n )  x.  ( log `  n ) ) ) )
9384, 89, 923eqtr4d 2518 . . . . . 6  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  = 
sum_ n  e.  (
1 ... ( |_ `  x ) ) sum_ d  e.  { y  e.  NN  |  y  ||  n }  ( (
mmu `  d )  x.  ( ( log `  (
n  /  d ) ) ^ 2 ) ) )
9436fveq2d 5876 . . . . . . . . 9  |-  ( n  =  ( d  x.  m )  ->  ( log `  ( n  / 
d ) )  =  ( log `  (
( d  x.  m
)  /  d ) ) )
9594oveq1d 6310 . . . . . . . 8  |-  ( n  =  ( d  x.  m )  ->  (
( log `  (
n  /  d ) ) ^ 2 )  =  ( ( log `  ( ( d  x.  m )  /  d
) ) ^ 2 ) )
9695oveq2d 6311 . . . . . . 7  |-  ( n  =  ( d  x.  m )  ->  (
( mmu `  d
)  x.  ( ( log `  ( n  /  d ) ) ^ 2 ) )  =  ( ( mmu `  d )  x.  (
( log `  (
( d  x.  m
)  /  d ) ) ^ 2 ) ) )
97 mucl 23281 . . . . . . . . . 10  |-  ( d  e.  NN  ->  (
mmu `  d )  e.  ZZ )
9842, 97syl 16 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  (
n  e.  ( 1 ... ( |_ `  x ) )  /\  d  e.  { y  e.  NN  |  y  ||  n } ) )  -> 
( mmu `  d
)  e.  ZZ )
9998zcnd 10979 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  (
n  e.  ( 1 ... ( |_ `  x ) )  /\  d  e.  { y  e.  NN  |  y  ||  n } ) )  -> 
( mmu `  d
)  e.  CC )
10062ad2antrl 727 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  (
n  e.  ( 1 ... ( |_ `  x ) )  /\  d  e.  { y  e.  NN  |  y  ||  n } ) )  ->  n  e.  RR+ )
10142nnrpd 11267 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  (
n  e.  ( 1 ... ( |_ `  x ) )  /\  d  e.  { y  e.  NN  |  y  ||  n } ) )  -> 
d  e.  RR+ )
102100, 101rpdivcld 11285 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  (
n  e.  ( 1 ... ( |_ `  x ) )  /\  d  e.  { y  e.  NN  |  y  ||  n } ) )  -> 
( n  /  d
)  e.  RR+ )
103 relogcl 22829 . . . . . . . . . . 11  |-  ( ( n  /  d )  e.  RR+  ->  ( log `  ( n  /  d
) )  e.  RR )
104103recnd 9634 . . . . . . . . . 10  |-  ( ( n  /  d )  e.  RR+  ->  ( log `  ( n  /  d
) )  e.  CC )
105102, 104syl 16 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  (
n  e.  ( 1 ... ( |_ `  x ) )  /\  d  e.  { y  e.  NN  |  y  ||  n } ) )  -> 
( log `  (
n  /  d ) )  e.  CC )
106105sqcld 12288 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  (
n  e.  ( 1 ... ( |_ `  x ) )  /\  d  e.  { y  e.  NN  |  y  ||  n } ) )  -> 
( ( log `  (
n  /  d ) ) ^ 2 )  e.  CC )
10799, 106mulcld 9628 . . . . . . 7  |-  ( ( x  e.  RR+  /\  (
n  e.  ( 1 ... ( |_ `  x ) )  /\  d  e.  { y  e.  NN  |  y  ||  n } ) )  -> 
( ( mmu `  d )  x.  (
( log `  (
n  /  d ) ) ^ 2 ) )  e.  CC )
10896, 39, 107dvdsflsumcom 23330 . . . . . 6  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) )
sum_ d  e.  {
y  e.  NN  | 
y  ||  n } 
( ( mmu `  d )  x.  (
( log `  (
n  /  d ) ) ^ 2 ) )  =  sum_ d  e.  ( 1 ... ( |_ `  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  d
) ) ) ( ( mmu `  d
)  x.  ( ( log `  ( ( d  x.  m )  /  d ) ) ^ 2 ) ) )
10929fveq2d 5876 . . . . . . . . . 10  |-  ( ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( log `  ( ( d  x.  m )  /  d
) )  =  ( log `  m ) )
110109oveq1d 6310 . . . . . . . . 9  |-  ( ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( ( log `  ( ( d  x.  m )  / 
d ) ) ^
2 )  =  ( ( log `  m
) ^ 2 ) )
111110oveq2d 6311 . . . . . . . 8  |-  ( ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( (
mmu `  d )  x.  ( ( log `  (
( d  x.  m
)  /  d ) ) ^ 2 ) )  =  ( ( mmu `  d )  x.  ( ( log `  m ) ^ 2 ) ) )
112111sumeq2dv 13505 . . . . . . 7  |-  ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  / 
d ) ) ) ( ( mmu `  d )  x.  (
( log `  (
( d  x.  m
)  /  d ) ) ^ 2 ) )  =  sum_ m  e.  ( 1 ... ( |_ `  ( x  / 
d ) ) ) ( ( mmu `  d )  x.  (
( log `  m
) ^ 2 ) ) )
113112sumeq2dv 13505 . . . . . 6  |-  ( x  e.  RR+  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  d
) ) ) ( ( mmu `  d
)  x.  ( ( log `  ( ( d  x.  m )  /  d ) ) ^ 2 ) )  =  sum_ d  e.  ( 1 ... ( |_
`  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  d
) ) ) ( ( mmu `  d
)  x.  ( ( log `  m ) ^ 2 ) ) )
11493, 108, 1133eqtrd 2512 . . . . 5  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  = 
sum_ d  e.  ( 1 ... ( |_
`  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  d
) ) ) ( ( mmu `  d
)  x.  ( ( log `  m ) ^ 2 ) ) )
115114oveq1d 6310 . . . 4  |-  ( x  e.  RR+  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  (
( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  /  x )  =  ( sum_ d  e.  ( 1 ... ( |_
`  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  d
) ) ) ( ( mmu `  d
)  x.  ( ( log `  m ) ^ 2 ) )  /  x ) )
116115oveq1d 6310 . . 3  |-  ( x  e.  RR+  ->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( ( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) )  =  ( (
sum_ d  e.  ( 1 ... ( |_
`  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  d
) ) ) ( ( mmu `  d
)  x.  ( ( log `  m ) ^ 2 ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )
117116mpteq2ia 4535 . 2  |-  ( x  e.  RR+  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( ( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )  =  ( x  e.  RR+  |->  ( (
sum_ d  e.  ( 1 ... ( |_
`  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  d
) ) ) ( ( mmu `  d
)  x.  ( ( log `  m ) ^ 2 ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )
118 eqid 2467 . . 3  |-  ( ( ( ( log `  (
x  /  d ) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  ( x  / 
d ) ) ) ) )  /  d
)  =  ( ( ( ( log `  (
x  /  d ) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  ( x  / 
d ) ) ) ) )  /  d
)
119118selberglem2 23597 . 2  |-  ( x  e.  RR+  |->  ( (
sum_ d  e.  ( 1 ... ( |_
`  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  d
) ) ) ( ( mmu `  d
)  x.  ( ( log `  m ) ^ 2 ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )  e.  O(1)
120117, 119eqeltri 2551 1  |-  ( x  e.  RR+  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( ( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )  e.  O(1)
Colors of variables: wff setvar class
Syntax hints:    /\ wa 369    = wceq 1379    e. wcel 1767   {crab 2821    C_ wss 3481   class class class wbr 4453    |-> cmpt 4511   ` cfv 5594  (class class class)co 6295   Fincfn 7528   CCcc 9502   RRcr 9503   1c1 9505    + caddc 9507    x. cmul 9509    - cmin 9817    / cdiv 10218   NNcn 10548   2c2 10597   ZZcz 10876   RR+crp 11232   ...cfz 11684   |_cfl 11907   ^cexp 12146   O(1)co1 13289   sum_csu 13488    || cdivides 13864   logclog 22808  Λcvma 23231  ψcchp 23232   mmucmu 23234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-inf2 8070  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581  ax-pre-sup 9582  ax-addf 9583  ax-mulf 9584
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-iin 4334  df-disj 4424  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-se 4845  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-of 6535  df-om 6696  df-1st 6795  df-2nd 6796  df-supp 6914  df-recs 7054  df-rdg 7088  df-1o 7142  df-2o 7143  df-oadd 7146  df-er 7323  df-map 7434  df-pm 7435  df-ixp 7482  df-en 7529  df-dom 7530  df-sdom 7531  df-fin 7532  df-fsupp 7842  df-fi 7883  df-sup 7913  df-oi 7947  df-card 8332  df-cda 8560  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-div 10219  df-nn 10549  df-2 10606  df-3 10607  df-4 10608  df-5 10609  df-6 10610  df-7 10611  df-8 10612  df-9 10613  df-10 10614  df-n0 10808  df-z 10877  df-dec 10989  df-uz 11095  df-q 11195  df-rp 11233  df-xneg 11330  df-xadd 11331  df-xmul 11332  df-ioo 11545  df-ioc 11546  df-ico 11547  df-icc 11548  df-fz 11685  df-fzo 11805  df-fl 11909  df-mod 11977  df-seq 12088  df-exp 12147  df-fac 12334  df-bc 12361  df-hash 12386  df-shft 12880  df-cj 12912  df-re 12913  df-im 12914  df-sqrt 13048  df-abs 13049  df-limsup 13274  df-clim 13291  df-rlim 13292  df-o1 13293  df-lo1 13294  df-sum 13489  df-ef 13682  df-e 13683  df-sin 13684  df-cos 13685  df-pi 13687  df-dvds 13865  df-gcd 14021  df-prm 14094  df-pc 14237  df-struct 14509  df-ndx 14510  df-slot 14511  df-base 14512  df-sets 14513  df-ress 14514  df-plusg 14585  df-mulr 14586  df-starv 14587  df-sca 14588  df-vsca 14589  df-ip 14590  df-tset 14591  df-ple 14592  df-ds 14594  df-unif 14595  df-hom 14596  df-cco 14597  df-rest 14695  df-topn 14696  df-0g 14714  df-gsum 14715  df-topgen 14716  df-pt 14717  df-prds 14720  df-xrs 14774  df-qtop 14779  df-imas 14780  df-xps 14782  df-mre 14858  df-mrc 14859  df-acs 14861  df-mgm 15746  df-sgrp 15785  df-mnd 15795  df-submnd 15840  df-mulg 15932  df-cntz 16227  df-cmn 16673  df-psmet 18281  df-xmet 18282  df-met 18283  df-bl 18284  df-mopn 18285  df-fbas 18286  df-fg 18287  df-cnfld 18291  df-top 19268  df-bases 19270  df-topon 19271  df-topsp 19272  df-cld 19388  df-ntr 19389  df-cls 19390  df-nei 19467  df-lp 19505  df-perf 19506  df-cn 19596  df-cnp 19597  df-haus 19684  df-cmp 19755  df-tx 19931  df-hmeo 20124  df-fil 20215  df-fm 20307  df-flim 20308  df-flf 20309  df-xms 20691  df-ms 20692  df-tms 20693  df-cncf 21250  df-limc 22138  df-dv 22139  df-log 22810  df-cxp 22811  df-em 23188  df-vma 23237  df-chp 23238  df-mu 23240
This theorem is referenced by:  selbergb  23600  selberg2  23602  selbergs  23625
  Copyright terms: Public domain W3C validator