MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  selberg Structured version   Visualization version   Unicode version

Theorem selberg 24386
Description: Selberg's symmetry formula. The statement has many forms, and this one is equivalent to the statement that  sum_
n  <_  x , Λ ( n ) log n  +  sum_ m  x.  n  <_  x , Λ ( m )Λ ( n )  =  2 x log x  +  O
( x ). Equation 10.4.10 of [Shapiro], p. 419. (Contributed by Mario Carneiro, 23-May-2016.)
Assertion
Ref Expression
selberg  |-  ( x  e.  RR+  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( ( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )  e.  O(1)
Distinct variable group:    x, n

Proof of Theorem selberg
Dummy variables  d  m  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5865 . . . . . . . . . . . . 13  |-  ( n  =  d  ->  (Λ `  n )  =  (Λ `  d ) )
2 oveq2 6298 . . . . . . . . . . . . . 14  |-  ( n  =  d  ->  (
x  /  n )  =  ( x  / 
d ) )
32fveq2d 5869 . . . . . . . . . . . . 13  |-  ( n  =  d  ->  (ψ `  ( x  /  n
) )  =  (ψ `  ( x  /  d
) ) )
41, 3oveq12d 6308 . . . . . . . . . . . 12  |-  ( n  =  d  ->  (
(Λ `  n )  x.  (ψ `  ( x  /  n ) ) )  =  ( (Λ `  d
)  x.  (ψ `  ( x  /  d
) ) ) )
54cbvsumv 13762 . . . . . . . . . . 11  |-  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  = 
sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( (Λ `  d
)  x.  (ψ `  ( x  /  d
) ) )
6 fzfid 12186 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1 ... ( |_ `  ( x  /  d
) ) )  e. 
Fin )
7 elfznn 11828 . . . . . . . . . . . . . . . . 17  |-  ( d  e.  ( 1 ... ( |_ `  x
) )  ->  d  e.  NN )
87adantl 468 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  e.  NN )
9 vmacl 24045 . . . . . . . . . . . . . . . 16  |-  ( d  e.  NN  ->  (Λ `  d )  e.  RR )
108, 9syl 17 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  d
)  e.  RR )
1110recnd 9669 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  d
)  e.  CC )
12 elfznn 11828 . . . . . . . . . . . . . . . . 17  |-  ( m  e.  ( 1 ... ( |_ `  (
x  /  d ) ) )  ->  m  e.  NN )
1312adantl 468 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  m  e.  NN )
14 vmacl 24045 . . . . . . . . . . . . . . . 16  |-  ( m  e.  NN  ->  (Λ `  m )  e.  RR )
1513, 14syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  (Λ `  m
)  e.  RR )
1615recnd 9669 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  (Λ `  m
)  e.  CC )
176, 11, 16fsummulc2 13845 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  d )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  d ) ) ) (Λ `  m
) )  =  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  d ) ) ) ( (Λ `  d )  x.  (Λ `  m ) ) )
187nnrpd 11339 . . . . . . . . . . . . . . . . 17  |-  ( d  e.  ( 1 ... ( |_ `  x
) )  ->  d  e.  RR+ )
19 rpdivcl 11325 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR+  /\  d  e.  RR+ )  ->  (
x  /  d )  e.  RR+ )
2018, 19sylan2 477 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  d )  e.  RR+ )
2120rpred 11341 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  d )  e.  RR )
22 chpval 24049 . . . . . . . . . . . . . . 15  |-  ( ( x  /  d )  e.  RR  ->  (ψ `  ( x  /  d
) )  =  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  d ) ) ) (Λ `  m
) )
2321, 22syl 17 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  (ψ `  (
x  /  d ) )  =  sum_ m  e.  ( 1 ... ( |_ `  ( x  / 
d ) ) ) (Λ `  m )
)
2423oveq2d 6306 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  d )  x.  (ψ `  ( x  /  d
) ) )  =  ( (Λ `  d
)  x.  sum_ m  e.  ( 1 ... ( |_ `  ( x  / 
d ) ) ) (Λ `  m )
) )
2513nncnd 10625 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  m  e.  CC )
267ad2antlr 733 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  d  e.  NN )
2726nncnd 10625 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  d  e.  CC )
2826nnne0d 10654 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  d  =/=  0 )
2925, 27, 28divcan3d 10388 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( (
d  x.  m )  /  d )  =  m )
3029fveq2d 5869 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  (Λ `  (
( d  x.  m
)  /  d ) )  =  (Λ `  m
) )
3130oveq2d 6306 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( (Λ `  d )  x.  (Λ `  ( ( d  x.  m )  /  d
) ) )  =  ( (Λ `  d
)  x.  (Λ `  m
) ) )
3231sumeq2dv 13769 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  / 
d ) ) ) ( (Λ `  d
)  x.  (Λ `  (
( d  x.  m
)  /  d ) ) )  =  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  d ) ) ) ( (Λ `  d )  x.  (Λ `  m ) ) )
3317, 24, 323eqtr4d 2495 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  d )  x.  (ψ `  ( x  /  d
) ) )  = 
sum_ m  e.  (
1 ... ( |_ `  ( x  /  d
) ) ) ( (Λ `  d )  x.  (Λ `  ( (
d  x.  m )  /  d ) ) ) )
3433sumeq2dv 13769 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  d
)  x.  (ψ `  ( x  /  d
) ) )  = 
sum_ d  e.  ( 1 ... ( |_
`  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  d
) ) ) ( (Λ `  d )  x.  (Λ `  ( (
d  x.  m )  /  d ) ) ) )
355, 34syl5eq 2497 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  = 
sum_ d  e.  ( 1 ... ( |_
`  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  d
) ) ) ( (Λ `  d )  x.  (Λ `  ( (
d  x.  m )  /  d ) ) ) )
36 oveq1 6297 . . . . . . . . . . . . 13  |-  ( n  =  ( d  x.  m )  ->  (
n  /  d )  =  ( ( d  x.  m )  / 
d ) )
3736fveq2d 5869 . . . . . . . . . . . 12  |-  ( n  =  ( d  x.  m )  ->  (Λ `  ( n  /  d
) )  =  (Λ `  ( ( d  x.  m )  /  d
) ) )
3837oveq2d 6306 . . . . . . . . . . 11  |-  ( n  =  ( d  x.  m )  ->  (
(Λ `  d )  x.  (Λ `  ( n  /  d ) ) )  =  ( (Λ `  d )  x.  (Λ `  ( ( d  x.  m )  /  d
) ) ) )
39 rpre 11308 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  x  e.  RR )
40 ssrab2 3514 . . . . . . . . . . . . . . . . 17  |-  { y  e.  NN  |  y 
||  n }  C_  NN
41 simprr 766 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR+  /\  (
n  e.  ( 1 ... ( |_ `  x ) )  /\  d  e.  { y  e.  NN  |  y  ||  n } ) )  -> 
d  e.  { y  e.  NN  |  y 
||  n } )
4240, 41sseldi 3430 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR+  /\  (
n  e.  ( 1 ... ( |_ `  x ) )  /\  d  e.  { y  e.  NN  |  y  ||  n } ) )  -> 
d  e.  NN )
4342anassrs 654 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  d  e.  {
y  e.  NN  | 
y  ||  n }
)  ->  d  e.  NN )
4443, 9syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  d  e.  {
y  e.  NN  | 
y  ||  n }
)  ->  (Λ `  d
)  e.  RR )
45 elfznn 11828 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  NN )
4645adantl 468 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
47 dvdsdivcl 24110 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  NN  /\  d  e.  { y  e.  NN  |  y  ||  n } )  ->  (
n  /  d )  e.  { y  e.  NN  |  y  ||  n } )
4846, 47sylan 474 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  d  e.  {
y  e.  NN  | 
y  ||  n }
)  ->  ( n  /  d )  e. 
{ y  e.  NN  |  y  ||  n }
)
4940, 48sseldi 3430 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  d  e.  {
y  e.  NN  | 
y  ||  n }
)  ->  ( n  /  d )  e.  NN )
50 vmacl 24045 . . . . . . . . . . . . . . 15  |-  ( ( n  /  d )  e.  NN  ->  (Λ `  ( n  /  d
) )  e.  RR )
5149, 50syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  d  e.  {
y  e.  NN  | 
y  ||  n }
)  ->  (Λ `  (
n  /  d ) )  e.  RR )
5244, 51remulcld 9671 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  d  e.  {
y  e.  NN  | 
y  ||  n }
)  ->  ( (Λ `  d )  x.  (Λ `  ( n  /  d
) ) )  e.  RR )
5352recnd 9669 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  d  e.  {
y  e.  NN  | 
y  ||  n }
)  ->  ( (Λ `  d )  x.  (Λ `  ( n  /  d
) ) )  e.  CC )
5453anasss 653 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  (
n  e.  ( 1 ... ( |_ `  x ) )  /\  d  e.  { y  e.  NN  |  y  ||  n } ) )  -> 
( (Λ `  d )  x.  (Λ `  ( n  /  d ) ) )  e.  CC )
5538, 39, 54dvdsflsumcom 24117 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) )
sum_ d  e.  {
y  e.  NN  | 
y  ||  n } 
( (Λ `  d )  x.  (Λ `  ( n  /  d ) ) )  =  sum_ d  e.  ( 1 ... ( |_ `  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  d
) ) ) ( (Λ `  d )  x.  (Λ `  ( (
d  x.  m )  /  d ) ) ) )
5635, 55eqtr4d 2488 . . . . . . . . 9  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  = 
sum_ n  e.  (
1 ... ( |_ `  x ) ) sum_ d  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  d )  x.  (Λ `  ( n  /  d
) ) ) )
5756oveq1d 6305 . . . . . . . 8  |-  ( x  e.  RR+  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  (ψ `  ( x  /  n
) ) )  + 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( log `  n
) ) )  =  ( sum_ n  e.  ( 1 ... ( |_
`  x ) )
sum_ d  e.  {
y  e.  NN  | 
y  ||  n } 
( (Λ `  d )  x.  (Λ `  ( n  /  d ) ) )  +  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( log `  n ) ) ) )
58 fzfid 12186 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( 1 ... ( |_ `  x ) )  e. 
Fin )
59 vmacl 24045 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  (Λ `  n )  e.  RR )
6046, 59syl 17 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  n
)  e.  RR )
6160recnd 9669 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  n
)  e.  CC )
6245nnrpd 11339 . . . . . . . . . . . . . 14  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  RR+ )
63 rpdivcl 11325 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR+  /\  n  e.  RR+ )  ->  (
x  /  n )  e.  RR+ )
6462, 63sylan2 477 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR+ )
6564rpred 11341 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR )
66 chpcl 24051 . . . . . . . . . . . 12  |-  ( ( x  /  n )  e.  RR  ->  (ψ `  ( x  /  n
) )  e.  RR )
6765, 66syl 17 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (ψ `  (
x  /  n ) )  e.  RR )
6867recnd 9669 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (ψ `  (
x  /  n ) )  e.  CC )
6961, 68mulcld 9663 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  (ψ `  ( x  /  n
) ) )  e.  CC )
7046nnrpd 11339 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  RR+ )
71 relogcl 23525 . . . . . . . . . . . 12  |-  ( n  e.  RR+  ->  ( log `  n )  e.  RR )
7270, 71syl 17 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  n )  e.  RR )
7372recnd 9669 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  n )  e.  CC )
7461, 73mulcld 9663 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  ( log `  n ) )  e.  CC )
7558, 69, 74fsumadd 13805 . . . . . . . 8  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  +  ( (Λ `  n
)  x.  ( log `  n ) ) )  =  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  + 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( log `  n
) ) ) )
76 fzfid 12186 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1 ... n )  e. 
Fin )
77 sgmss 24033 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  { y  e.  NN  |  y 
||  n }  C_  ( 1 ... n
) )
7846, 77syl 17 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  { y  e.  NN  |  y  ||  n }  C_  ( 1 ... n ) )
79 ssfi 7792 . . . . . . . . . . . 12  |-  ( ( ( 1 ... n
)  e.  Fin  /\  { y  e.  NN  | 
y  ||  n }  C_  ( 1 ... n
) )  ->  { y  e.  NN  |  y 
||  n }  e.  Fin )
8076, 78, 79syl2anc 667 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  { y  e.  NN  |  y  ||  n }  e.  Fin )
8180, 52fsumrecl 13800 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ d  e. 
{ y  e.  NN  |  y  ||  n } 
( (Λ `  d )  x.  (Λ `  ( n  /  d ) ) )  e.  RR )
8281recnd 9669 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ d  e. 
{ y  e.  NN  |  y  ||  n } 
( (Λ `  d )  x.  (Λ `  ( n  /  d ) ) )  e.  CC )
8358, 82, 74fsumadd 13805 . . . . . . . 8  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( sum_ d  e.  {
y  e.  NN  | 
y  ||  n } 
( (Λ `  d )  x.  (Λ `  ( n  /  d ) ) )  +  ( (Λ `  n )  x.  ( log `  n ) ) )  =  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) sum_ d  e.  { y  e.  NN  |  y  ||  n } 
( (Λ `  d )  x.  (Λ `  ( n  /  d ) ) )  +  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( log `  n ) ) ) )
8457, 75, 833eqtr4d 2495 . . . . . . 7  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  +  ( (Λ `  n
)  x.  ( log `  n ) ) )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( sum_ d  e.  {
y  e.  NN  | 
y  ||  n } 
( (Λ `  d )  x.  (Λ `  ( n  /  d ) ) )  +  ( (Λ `  n )  x.  ( log `  n ) ) ) )
8573, 68addcomd 9835 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( log `  n )  +  (ψ `  ( x  /  n ) ) )  =  ( (ψ `  ( x  /  n
) )  +  ( log `  n ) ) )
8685oveq2d 6306 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  (
( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  =  ( (Λ `  n
)  x.  ( (ψ `  ( x  /  n
) )  +  ( log `  n ) ) ) )
8761, 68, 73adddid 9667 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  (
(ψ `  ( x  /  n ) )  +  ( log `  n
) ) )  =  ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  +  ( (Λ `  n
)  x.  ( log `  n ) ) ) )
8886, 87eqtrd 2485 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  (
( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  =  ( ( (Λ `  n )  x.  (ψ `  ( x  /  n
) ) )  +  ( (Λ `  n
)  x.  ( log `  n ) ) ) )
8988sumeq2dv 13769 . . . . . . 7  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  = 
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( (Λ `  n
)  x.  (ψ `  ( x  /  n
) ) )  +  ( (Λ `  n
)  x.  ( log `  n ) ) ) )
90 logsqvma2 24381 . . . . . . . . 9  |-  ( n  e.  NN  ->  sum_ d  e.  { y  e.  NN  |  y  ||  n } 
( ( mmu `  d )  x.  (
( log `  (
n  /  d ) ) ^ 2 ) )  =  ( sum_ d  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  d )  x.  (Λ `  ( n  /  d
) ) )  +  ( (Λ `  n
)  x.  ( log `  n ) ) ) )
9146, 90syl 17 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ d  e. 
{ y  e.  NN  |  y  ||  n } 
( ( mmu `  d )  x.  (
( log `  (
n  /  d ) ) ^ 2 ) )  =  ( sum_ d  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  d )  x.  (Λ `  ( n  /  d
) ) )  +  ( (Λ `  n
)  x.  ( log `  n ) ) ) )
9291sumeq2dv 13769 . . . . . . 7  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) )
sum_ d  e.  {
y  e.  NN  | 
y  ||  n } 
( ( mmu `  d )  x.  (
( log `  (
n  /  d ) ) ^ 2 ) )  =  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( sum_ d  e.  {
y  e.  NN  | 
y  ||  n } 
( (Λ `  d )  x.  (Λ `  ( n  /  d ) ) )  +  ( (Λ `  n )  x.  ( log `  n ) ) ) )
9384, 89, 923eqtr4d 2495 . . . . . 6  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  = 
sum_ n  e.  (
1 ... ( |_ `  x ) ) sum_ d  e.  { y  e.  NN  |  y  ||  n }  ( (
mmu `  d )  x.  ( ( log `  (
n  /  d ) ) ^ 2 ) ) )
9436fveq2d 5869 . . . . . . . . 9  |-  ( n  =  ( d  x.  m )  ->  ( log `  ( n  / 
d ) )  =  ( log `  (
( d  x.  m
)  /  d ) ) )
9594oveq1d 6305 . . . . . . . 8  |-  ( n  =  ( d  x.  m )  ->  (
( log `  (
n  /  d ) ) ^ 2 )  =  ( ( log `  ( ( d  x.  m )  /  d
) ) ^ 2 ) )
9695oveq2d 6306 . . . . . . 7  |-  ( n  =  ( d  x.  m )  ->  (
( mmu `  d
)  x.  ( ( log `  ( n  /  d ) ) ^ 2 ) )  =  ( ( mmu `  d )  x.  (
( log `  (
( d  x.  m
)  /  d ) ) ^ 2 ) ) )
97 mucl 24068 . . . . . . . . . 10  |-  ( d  e.  NN  ->  (
mmu `  d )  e.  ZZ )
9842, 97syl 17 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  (
n  e.  ( 1 ... ( |_ `  x ) )  /\  d  e.  { y  e.  NN  |  y  ||  n } ) )  -> 
( mmu `  d
)  e.  ZZ )
9998zcnd 11041 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  (
n  e.  ( 1 ... ( |_ `  x ) )  /\  d  e.  { y  e.  NN  |  y  ||  n } ) )  -> 
( mmu `  d
)  e.  CC )
10062ad2antrl 734 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  (
n  e.  ( 1 ... ( |_ `  x ) )  /\  d  e.  { y  e.  NN  |  y  ||  n } ) )  ->  n  e.  RR+ )
10142nnrpd 11339 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  (
n  e.  ( 1 ... ( |_ `  x ) )  /\  d  e.  { y  e.  NN  |  y  ||  n } ) )  -> 
d  e.  RR+ )
102100, 101rpdivcld 11358 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  (
n  e.  ( 1 ... ( |_ `  x ) )  /\  d  e.  { y  e.  NN  |  y  ||  n } ) )  -> 
( n  /  d
)  e.  RR+ )
103 relogcl 23525 . . . . . . . . . . 11  |-  ( ( n  /  d )  e.  RR+  ->  ( log `  ( n  /  d
) )  e.  RR )
104103recnd 9669 . . . . . . . . . 10  |-  ( ( n  /  d )  e.  RR+  ->  ( log `  ( n  /  d
) )  e.  CC )
105102, 104syl 17 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  (
n  e.  ( 1 ... ( |_ `  x ) )  /\  d  e.  { y  e.  NN  |  y  ||  n } ) )  -> 
( log `  (
n  /  d ) )  e.  CC )
106105sqcld 12414 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  (
n  e.  ( 1 ... ( |_ `  x ) )  /\  d  e.  { y  e.  NN  |  y  ||  n } ) )  -> 
( ( log `  (
n  /  d ) ) ^ 2 )  e.  CC )
10799, 106mulcld 9663 . . . . . . 7  |-  ( ( x  e.  RR+  /\  (
n  e.  ( 1 ... ( |_ `  x ) )  /\  d  e.  { y  e.  NN  |  y  ||  n } ) )  -> 
( ( mmu `  d )  x.  (
( log `  (
n  /  d ) ) ^ 2 ) )  e.  CC )
10896, 39, 107dvdsflsumcom 24117 . . . . . 6  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) )
sum_ d  e.  {
y  e.  NN  | 
y  ||  n } 
( ( mmu `  d )  x.  (
( log `  (
n  /  d ) ) ^ 2 ) )  =  sum_ d  e.  ( 1 ... ( |_ `  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  d
) ) ) ( ( mmu `  d
)  x.  ( ( log `  ( ( d  x.  m )  /  d ) ) ^ 2 ) ) )
10929fveq2d 5869 . . . . . . . . . 10  |-  ( ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( log `  ( ( d  x.  m )  /  d
) )  =  ( log `  m ) )
110109oveq1d 6305 . . . . . . . . 9  |-  ( ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( ( log `  ( ( d  x.  m )  / 
d ) ) ^
2 )  =  ( ( log `  m
) ^ 2 ) )
111110oveq2d 6306 . . . . . . . 8  |-  ( ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( (
mmu `  d )  x.  ( ( log `  (
( d  x.  m
)  /  d ) ) ^ 2 ) )  =  ( ( mmu `  d )  x.  ( ( log `  m ) ^ 2 ) ) )
112111sumeq2dv 13769 . . . . . . 7  |-  ( ( x  e.  RR+  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  / 
d ) ) ) ( ( mmu `  d )  x.  (
( log `  (
( d  x.  m
)  /  d ) ) ^ 2 ) )  =  sum_ m  e.  ( 1 ... ( |_ `  ( x  / 
d ) ) ) ( ( mmu `  d )  x.  (
( log `  m
) ^ 2 ) ) )
113112sumeq2dv 13769 . . . . . 6  |-  ( x  e.  RR+  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  d
) ) ) ( ( mmu `  d
)  x.  ( ( log `  ( ( d  x.  m )  /  d ) ) ^ 2 ) )  =  sum_ d  e.  ( 1 ... ( |_
`  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  d
) ) ) ( ( mmu `  d
)  x.  ( ( log `  m ) ^ 2 ) ) )
11493, 108, 1133eqtrd 2489 . . . . 5  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( (Λ `  n
)  x.  ( ( log `  n )  +  (ψ `  (
x  /  n ) ) ) )  = 
sum_ d  e.  ( 1 ... ( |_
`  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  d
) ) ) ( ( mmu `  d
)  x.  ( ( log `  m ) ^ 2 ) ) )
115114oveq1d 6305 . . . 4  |-  ( x  e.  RR+  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( (Λ `  n )  x.  (
( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  /  x )  =  ( sum_ d  e.  ( 1 ... ( |_
`  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  d
) ) ) ( ( mmu `  d
)  x.  ( ( log `  m ) ^ 2 ) )  /  x ) )
116115oveq1d 6305 . . 3  |-  ( x  e.  RR+  ->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( ( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) )  =  ( (
sum_ d  e.  ( 1 ... ( |_
`  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  d
) ) ) ( ( mmu `  d
)  x.  ( ( log `  m ) ^ 2 ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )
117116mpteq2ia 4485 . 2  |-  ( x  e.  RR+  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( ( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )  =  ( x  e.  RR+  |->  ( (
sum_ d  e.  ( 1 ... ( |_
`  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  d
) ) ) ( ( mmu `  d
)  x.  ( ( log `  m ) ^ 2 ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )
118 eqid 2451 . . 3  |-  ( ( ( ( log `  (
x  /  d ) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  ( x  / 
d ) ) ) ) )  /  d
)  =  ( ( ( ( log `  (
x  /  d ) ) ^ 2 )  +  ( 2  -  ( 2  x.  ( log `  ( x  / 
d ) ) ) ) )  /  d
)
119118selberglem2 24384 . 2  |-  ( x  e.  RR+  |->  ( (
sum_ d  e.  ( 1 ... ( |_
`  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  d
) ) ) ( ( mmu `  d
)  x.  ( ( log `  m ) ^ 2 ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )  e.  O(1)
120117, 119eqeltri 2525 1  |-  ( x  e.  RR+  |->  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( (Λ `  n )  x.  ( ( log `  n
)  +  (ψ `  ( x  /  n
) ) ) )  /  x )  -  ( 2  x.  ( log `  x ) ) ) )  e.  O(1)
Colors of variables: wff setvar class
Syntax hints:    /\ wa 371    = wceq 1444    e. wcel 1887   {crab 2741    C_ wss 3404   class class class wbr 4402    |-> cmpt 4461   ` cfv 5582  (class class class)co 6290   Fincfn 7569   CCcc 9537   RRcr 9538   1c1 9540    + caddc 9542    x. cmul 9544    - cmin 9860    / cdiv 10269   NNcn 10609   2c2 10659   ZZcz 10937   RR+crp 11302   ...cfz 11784   |_cfl 12026   ^cexp 12272   O(1)co1 13550   sum_csu 13752    || cdvds 14305   logclog 23504  Λcvma 24018  ψcchp 24019   mmucmu 24021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-inf2 8146  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616  ax-pre-sup 9617  ax-addf 9618  ax-mulf 9619
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-fal 1450  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-reu 2744  df-rmo 2745  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-int 4235  df-iun 4280  df-iin 4281  df-disj 4374  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-se 4794  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-isom 5591  df-riota 6252  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-of 6531  df-om 6693  df-1st 6793  df-2nd 6794  df-supp 6915  df-wrecs 7028  df-recs 7090  df-rdg 7128  df-1o 7182  df-2o 7183  df-oadd 7186  df-er 7363  df-map 7474  df-pm 7475  df-ixp 7523  df-en 7570  df-dom 7571  df-sdom 7572  df-fin 7573  df-fsupp 7884  df-fi 7925  df-sup 7956  df-inf 7957  df-oi 8025  df-card 8373  df-cda 8598  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-div 10270  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-5 10671  df-6 10672  df-7 10673  df-8 10674  df-9 10675  df-10 10676  df-n0 10870  df-z 10938  df-dec 11052  df-uz 11160  df-q 11265  df-rp 11303  df-xneg 11409  df-xadd 11410  df-xmul 11411  df-ioo 11639  df-ioc 11640  df-ico 11641  df-icc 11642  df-fz 11785  df-fzo 11916  df-fl 12028  df-mod 12097  df-seq 12214  df-exp 12273  df-fac 12460  df-bc 12488  df-hash 12516  df-shft 13130  df-cj 13162  df-re 13163  df-im 13164  df-sqrt 13298  df-abs 13299  df-limsup 13526  df-clim 13552  df-rlim 13553  df-o1 13554  df-lo1 13555  df-sum 13753  df-ef 14121  df-e 14122  df-sin 14123  df-cos 14124  df-pi 14126  df-dvds 14306  df-gcd 14469  df-prm 14623  df-pc 14787  df-struct 15123  df-ndx 15124  df-slot 15125  df-base 15126  df-sets 15127  df-ress 15128  df-plusg 15203  df-mulr 15204  df-starv 15205  df-sca 15206  df-vsca 15207  df-ip 15208  df-tset 15209  df-ple 15210  df-ds 15212  df-unif 15213  df-hom 15214  df-cco 15215  df-rest 15321  df-topn 15322  df-0g 15340  df-gsum 15341  df-topgen 15342  df-pt 15343  df-prds 15346  df-xrs 15400  df-qtop 15406  df-imas 15407  df-xps 15410  df-mre 15492  df-mrc 15493  df-acs 15495  df-mgm 16488  df-sgrp 16527  df-mnd 16537  df-submnd 16583  df-mulg 16676  df-cntz 16971  df-cmn 17432  df-psmet 18962  df-xmet 18963  df-met 18964  df-bl 18965  df-mopn 18966  df-fbas 18967  df-fg 18968  df-cnfld 18971  df-top 19921  df-bases 19922  df-topon 19923  df-topsp 19924  df-cld 20034  df-ntr 20035  df-cls 20036  df-nei 20114  df-lp 20152  df-perf 20153  df-cn 20243  df-cnp 20244  df-haus 20331  df-cmp 20402  df-tx 20577  df-hmeo 20770  df-fil 20861  df-fm 20953  df-flim 20954  df-flf 20955  df-xms 21335  df-ms 21336  df-tms 21337  df-cncf 21910  df-limc 22821  df-dv 22822  df-log 23506  df-cxp 23507  df-em 23918  df-vma 24024  df-chp 24025  df-mu 24027
This theorem is referenced by:  selbergb  24387  selberg2  24389  selbergs  24412
  Copyright terms: Public domain W3C validator