Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  segletr Structured version   Unicode version

Theorem segletr 29995
Description: Segment less than is transitive. Theorem 5.8 of [Schwabhauser] p. 42. (Contributed by Scott Fenton, 11-Oct-2013.)
Assertion
Ref Expression
segletr  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  (
( <. A ,  B >. 
Seg<_ 
<. C ,  D >.  /\ 
<. C ,  D >.  Seg<_  <. E ,  F >. )  ->  <. A ,  B >. 
Seg<_ 
<. E ,  F >. ) )

Proof of Theorem segletr
Dummy variables  y 
z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprll 761 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  ( ( y 
Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr
<. C ,  y >.
)  /\  ( z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr
<. E ,  z >.
) ) )  -> 
y  Btwn  <. C ,  D >. )
2 simprrr 764 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  ( ( y 
Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr
<. C ,  y >.
)  /\  ( z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr
<. E ,  z >.
) ) )  ->  <. C ,  D >.Cgr <. E ,  z >. )
31, 2jca 530 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  ( ( y 
Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr
<. C ,  y >.
)  /\  ( z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr
<. E ,  z >.
) ) )  -> 
( y  Btwn  <. C ,  D >.  /\  <. C ,  D >.Cgr <. E ,  z
>. ) )
4 simpl1 997 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  ->  N  e.  NN )
5 simpl23 1074 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  ->  C  e.  ( EE `  N ) )
6 simprl 754 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  ->  y  e.  ( EE `  N ) )
7 simpl31 1075 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  ->  D  e.  ( EE `  N ) )
8 simpl32 1076 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  ->  E  e.  ( EE `  N ) )
9 simprr 755 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  ->  z  e.  ( EE `  N ) )
10 cgrxfr 29936 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( C  e.  ( EE `  N )  /\  y  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) )  /\  ( E  e.  ( EE `  N )  /\  z  e.  ( EE `  N
) ) )  -> 
( ( y  Btwn  <. C ,  D >.  /\ 
<. C ,  D >.Cgr <. E ,  z >. )  ->  E. w  e.  ( EE `  N ) ( w  Btwn  <. E , 
z >.  /\  <. C ,  <. y ,  D >. >.Cgr3 <. E ,  <. w ,  z >. >. ) ) )
114, 5, 6, 7, 8, 9, 10syl132anc 1244 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  ->  ( ( y 
Btwn  <. C ,  D >.  /\  <. C ,  D >.Cgr
<. E ,  z >.
)  ->  E. w  e.  ( EE `  N
) ( w  Btwn  <. E ,  z >.  /\ 
<. C ,  <. y ,  D >. >.Cgr3 <. E ,  <. w ,  z >. >. )
) )
1211adantr 463 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  ( ( y 
Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr
<. C ,  y >.
)  /\  ( z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr
<. E ,  z >.
) ) )  -> 
( ( y  Btwn  <. C ,  D >.  /\ 
<. C ,  D >.Cgr <. E ,  z >. )  ->  E. w  e.  ( EE `  N ) ( w  Btwn  <. E , 
z >.  /\  <. C ,  <. y ,  D >. >.Cgr3 <. E ,  <. w ,  z >. >. ) ) )
133, 12mpd 15 . . . . 5  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  ( ( y 
Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr
<. C ,  y >.
)  /\  ( z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr
<. E ,  z >.
) ) )  ->  E. w  e.  ( EE `  N ) ( w  Btwn  <. E , 
z >.  /\  <. C ,  <. y ,  D >. >.Cgr3 <. E ,  <. w ,  z >. >. ) )
14 anass 647 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  w  e.  ( EE `  N ) )  <->  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
( y  e.  ( EE `  N )  /\  z  e.  ( EE `  N ) )  /\  w  e.  ( EE `  N
) ) ) )
15 df-3an 973 . . . . . . . . . 10  |-  ( ( y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) )  <->  ( (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) )  /\  w  e.  ( EE `  N ) ) )
1615anbi2i 692 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  <->  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
( y  e.  ( EE `  N )  /\  z  e.  ( EE `  N ) )  /\  w  e.  ( EE `  N
) ) ) )
1714, 16bitr4i 252 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  w  e.  ( EE `  N ) )  <->  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) ) )
18 simpl1 997 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  ->  N  e.  NN )
19 simpl23 1074 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  ->  C  e.  ( EE `  N ) )
20 simpr1 1000 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  -> 
y  e.  ( EE
`  N ) )
21 simpl31 1075 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  ->  D  e.  ( EE `  N ) )
22 simpl32 1076 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  ->  E  e.  ( EE `  N ) )
23 simpr3 1002 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  ->  w  e.  ( EE `  N ) )
24 simpr2 1001 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  -> 
z  e.  ( EE
`  N ) )
25 brcgr3 29927 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  ( C  e.  ( EE `  N )  /\  y  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) )  /\  ( E  e.  ( EE `  N )  /\  w  e.  ( EE `  N
)  /\  z  e.  ( EE `  N ) ) )  ->  ( <. C ,  <. y ,  D >. >.Cgr3 <. E ,  <. w ,  z >. >.  <->  ( <. C ,  y >.Cgr <. E ,  w >.  /\  <. C ,  D >.Cgr <. E ,  z
>.  /\  <. y ,  D >.Cgr
<. w ,  z >.
) ) )
2618, 19, 20, 21, 22, 23, 24, 25syl133anc 1249 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  -> 
( <. C ,  <. y ,  D >. >.Cgr3 <. E ,  <. w ,  z >. >.  <-> 
( <. C ,  y
>.Cgr <. E ,  w >.  /\  <. C ,  D >.Cgr
<. E ,  z >.  /\  <. y ,  D >.Cgr
<. w ,  z >.
) ) )
2726anbi2d 701 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  -> 
( ( w  Btwn  <. E ,  z >.  /\ 
<. C ,  <. y ,  D >. >.Cgr3 <. E ,  <. w ,  z >. >. )  <->  ( w  Btwn  <. E , 
z >.  /\  ( <. C ,  y >.Cgr <. E ,  w >.  /\  <. C ,  D >.Cgr <. E ,  z
>.  /\  <. y ,  D >.Cgr
<. w ,  z >.
) ) ) )
2827adantr 463 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  /\  ( ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  /\  ( z  Btwn  <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. E ,  z >. ) ) )  ->  (
( w  Btwn  <. E , 
z >.  /\  <. C ,  <. y ,  D >. >.Cgr3 <. E ,  <. w ,  z >. >. )  <->  ( w  Btwn  <. E ,  z
>.  /\  ( <. C , 
y >.Cgr <. E ,  w >.  /\  <. C ,  D >.Cgr
<. E ,  z >.  /\  <. y ,  D >.Cgr
<. w ,  z >.
) ) ) )
29 df-3an 973 . . . . . . . . . . 11  |-  ( ( ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  /\  (
z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr <. E ,  z
>. )  /\  (
w  Btwn  <. E , 
z >.  /\  ( <. C ,  y >.Cgr <. E ,  w >.  /\  <. C ,  D >.Cgr <. E ,  z
>.  /\  <. y ,  D >.Cgr
<. w ,  z >.
) ) )  <->  ( (
( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  /\  (
z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr <. E ,  z
>. ) )  /\  (
w  Btwn  <. E , 
z >.  /\  ( <. C ,  y >.Cgr <. E ,  w >.  /\  <. C ,  D >.Cgr <. E ,  z
>.  /\  <. y ,  D >.Cgr
<. w ,  z >.
) ) ) )
30 simpl33 1077 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  ->  F  e.  ( EE `  N ) )
31 simpr3l 1055 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  /\  ( ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  /\  ( z  Btwn  <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. E ,  z >. )  /\  ( w  Btwn  <. E ,  z >.  /\  ( <. C ,  y
>.Cgr <. E ,  w >.  /\  <. C ,  D >.Cgr
<. E ,  z >.  /\  <. y ,  D >.Cgr
<. w ,  z >.
) ) ) )  ->  w  Btwn  <. E , 
z >. )
32 simpr2l 1053 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  /\  ( ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  /\  ( z  Btwn  <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. E ,  z >. )  /\  ( w  Btwn  <. E ,  z >.  /\  ( <. C ,  y
>.Cgr <. E ,  w >.  /\  <. C ,  D >.Cgr
<. E ,  z >.  /\  <. y ,  D >.Cgr
<. w ,  z >.
) ) ) )  ->  z  Btwn  <. E ,  F >. )
3318, 22, 23, 24, 30, 31, 32btwnexchand 29907 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  /\  ( ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  /\  ( z  Btwn  <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. E ,  z >. )  /\  ( w  Btwn  <. E ,  z >.  /\  ( <. C ,  y
>.Cgr <. E ,  w >.  /\  <. C ,  D >.Cgr
<. E ,  z >.  /\  <. y ,  D >.Cgr
<. w ,  z >.
) ) ) )  ->  w  Btwn  <. E ,  F >. )
34 simpl21 1072 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  ->  A  e.  ( EE `  N ) )
35 simpl22 1073 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  ->  B  e.  ( EE `  N ) )
36 simpr1r 1052 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  /\  ( ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  /\  ( z  Btwn  <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. E ,  z >. )  /\  ( w  Btwn  <. E ,  z >.  /\  ( <. C ,  y
>.Cgr <. E ,  w >.  /\  <. C ,  D >.Cgr
<. E ,  z >.  /\  <. y ,  D >.Cgr
<. w ,  z >.
) ) ) )  ->  <. A ,  B >.Cgr
<. C ,  y >.
)
37 simp3r1 1102 . . . . . . . . . . . . . 14  |-  ( ( ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  /\  (
z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr <. E ,  z
>. )  /\  (
w  Btwn  <. E , 
z >.  /\  ( <. C ,  y >.Cgr <. E ,  w >.  /\  <. C ,  D >.Cgr <. E ,  z
>.  /\  <. y ,  D >.Cgr
<. w ,  z >.
) ) )  ->  <. C ,  y >.Cgr <. E ,  w >. )
3837adantl 464 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  /\  ( ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  /\  ( z  Btwn  <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. E ,  z >. )  /\  ( w  Btwn  <. E ,  z >.  /\  ( <. C ,  y
>.Cgr <. E ,  w >.  /\  <. C ,  D >.Cgr
<. E ,  z >.  /\  <. y ,  D >.Cgr
<. w ,  z >.
) ) ) )  ->  <. C ,  y
>.Cgr <. E ,  w >. )
3918, 34, 35, 19, 20, 22, 23, 36, 38cgrtrand 29874 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  /\  ( ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  /\  ( z  Btwn  <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. E ,  z >. )  /\  ( w  Btwn  <. E ,  z >.  /\  ( <. C ,  y
>.Cgr <. E ,  w >.  /\  <. C ,  D >.Cgr
<. E ,  z >.  /\  <. y ,  D >.Cgr
<. w ,  z >.
) ) ) )  ->  <. A ,  B >.Cgr
<. E ,  w >. )
4033, 39jca 530 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  /\  ( ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  /\  ( z  Btwn  <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. E ,  z >. )  /\  ( w  Btwn  <. E ,  z >.  /\  ( <. C ,  y
>.Cgr <. E ,  w >.  /\  <. C ,  D >.Cgr
<. E ,  z >.  /\  <. y ,  D >.Cgr
<. w ,  z >.
) ) ) )  ->  ( w  Btwn  <. E ,  F >.  /\ 
<. A ,  B >.Cgr <. E ,  w >. ) )
4129, 40sylan2br 474 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  /\  ( ( ( y 
Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr
<. C ,  y >.
)  /\  ( z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr
<. E ,  z >.
) )  /\  (
w  Btwn  <. E , 
z >.  /\  ( <. C ,  y >.Cgr <. E ,  w >.  /\  <. C ,  D >.Cgr <. E ,  z
>.  /\  <. y ,  D >.Cgr
<. w ,  z >.
) ) ) )  ->  ( w  Btwn  <. E ,  F >.  /\ 
<. A ,  B >.Cgr <. E ,  w >. ) )
4241expr 613 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  /\  ( ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  /\  ( z  Btwn  <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. E ,  z >. ) ) )  ->  (
( w  Btwn  <. E , 
z >.  /\  ( <. C ,  y >.Cgr <. E ,  w >.  /\  <. C ,  D >.Cgr <. E ,  z
>.  /\  <. y ,  D >.Cgr
<. w ,  z >.
) )  ->  (
w  Btwn  <. E ,  F >.  /\  <. A ,  B >.Cgr <. E ,  w >. ) ) )
4328, 42sylbid 215 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N )  /\  w  e.  ( EE `  N
) ) )  /\  ( ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  /\  ( z  Btwn  <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. E ,  z >. ) ) )  ->  (
( w  Btwn  <. E , 
z >.  /\  <. C ,  <. y ,  D >. >.Cgr3 <. E ,  <. w ,  z >. >. )  ->  (
w  Btwn  <. E ,  F >.  /\  <. A ,  B >.Cgr <. E ,  w >. ) ) )
4417, 43sylanb 470 . . . . . . 7  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  w  e.  ( EE `  N ) )  /\  ( ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  /\  (
z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr <. E ,  z
>. ) ) )  -> 
( ( w  Btwn  <. E ,  z >.  /\ 
<. C ,  <. y ,  D >. >.Cgr3 <. E ,  <. w ,  z >. >. )  ->  ( w  Btwn  <. E ,  F >.  /\  <. A ,  B >.Cgr <. E ,  w >. ) ) )
4544an32s 802 . . . . . 6  |-  ( ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  ( ( y 
Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr
<. C ,  y >.
)  /\  ( z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr
<. E ,  z >.
) ) )  /\  w  e.  ( EE `  N ) )  -> 
( ( w  Btwn  <. E ,  z >.  /\ 
<. C ,  <. y ,  D >. >.Cgr3 <. E ,  <. w ,  z >. >. )  ->  ( w  Btwn  <. E ,  F >.  /\  <. A ,  B >.Cgr <. E ,  w >. ) ) )
4645reximdva 2929 . . . . 5  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  ( ( y 
Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr
<. C ,  y >.
)  /\  ( z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr
<. E ,  z >.
) ) )  -> 
( E. w  e.  ( EE `  N
) ( w  Btwn  <. E ,  z >.  /\ 
<. C ,  <. y ,  D >. >.Cgr3 <. E ,  <. w ,  z >. >. )  ->  E. w  e.  ( EE `  N ) ( w  Btwn  <. E ,  F >.  /\  <. A ,  B >.Cgr <. E ,  w >. ) ) )
4713, 46mpd 15 . . . 4  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  ( ( y 
Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr
<. C ,  y >.
)  /\  ( z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr
<. E ,  z >.
) ) )  ->  E. w  e.  ( EE `  N ) ( w  Btwn  <. E ,  F >.  /\  <. A ,  B >.Cgr <. E ,  w >. ) )
4847exp31 602 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  (
( y  e.  ( EE `  N )  /\  z  e.  ( EE `  N ) )  ->  ( (
( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  /\  (
z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr <. E ,  z
>. ) )  ->  E. w  e.  ( EE `  N
) ( w  Btwn  <. E ,  F >.  /\ 
<. A ,  B >.Cgr <. E ,  w >. ) ) ) )
4948rexlimdvv 2952 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  ( E. y  e.  ( EE `  N ) E. z  e.  ( EE
`  N ) ( ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  /\  (
z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr <. E ,  z
>. ) )  ->  E. w  e.  ( EE `  N
) ( w  Btwn  <. E ,  F >.  /\ 
<. A ,  B >.Cgr <. E ,  w >. ) ) )
50 simp1 994 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  N  e.  NN )
51 simp21 1027 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  A  e.  ( EE `  N
) )
52 simp22 1028 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  B  e.  ( EE `  N
) )
53 simp23 1029 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  C  e.  ( EE `  N
) )
54 simp31 1030 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  D  e.  ( EE `  N
) )
55 brsegle 29989 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  ( <. A ,  B >.  Seg<_  <. C ,  D >.  <->  E. y  e.  ( EE `  N ) ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. ) ) )
5650, 51, 52, 53, 54, 55syl122anc 1235 . . . 4  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  ( <. A ,  B >.  Seg<_  <. C ,  D >.  <->  E. y  e.  ( EE `  N ) ( y 
Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr
<. C ,  y >.
) ) )
57 simp32 1031 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  E  e.  ( EE `  N
) )
58 simp33 1032 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  F  e.  ( EE `  N
) )
59 brsegle 29989 . . . . 5  |-  ( ( N  e.  NN  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) )  /\  ( E  e.  ( EE `  N )  /\  F  e.  ( EE `  N ) ) )  ->  ( <. C ,  D >.  Seg<_  <. E ,  F >.  <->  E. z  e.  ( EE `  N ) ( z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr <. E ,  z
>. ) ) )
6050, 53, 54, 57, 58, 59syl122anc 1235 . . . 4  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  ( <. C ,  D >.  Seg<_  <. E ,  F >.  <->  E. z  e.  ( EE `  N ) ( z 
Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr
<. E ,  z >.
) ) )
6156, 60anbi12d 708 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  (
( <. A ,  B >. 
Seg<_ 
<. C ,  D >.  /\ 
<. C ,  D >.  Seg<_  <. E ,  F >. )  <-> 
( E. y  e.  ( EE `  N
) ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  /\  E. z  e.  ( EE `  N
) ( z  Btwn  <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. E ,  z >. ) ) ) )
62 reeanv 3022 . . 3  |-  ( E. y  e.  ( EE
`  N ) E. z  e.  ( EE
`  N ) ( ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  /\  (
z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr <. E ,  z
>. ) )  <->  ( E. y  e.  ( EE `  N ) ( y 
Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr
<. C ,  y >.
)  /\  E. z  e.  ( EE `  N
) ( z  Btwn  <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. E ,  z >. ) ) )
6361, 62syl6bbr 263 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  (
( <. A ,  B >. 
Seg<_ 
<. C ,  D >.  /\ 
<. C ,  D >.  Seg<_  <. E ,  F >. )  <->  E. y  e.  ( EE `  N ) E. z  e.  ( EE
`  N ) ( ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  /\  (
z  Btwn  <. E ,  F >.  /\  <. C ,  D >.Cgr <. E ,  z
>. ) ) ) )
64 brsegle 29989 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( E  e.  ( EE `  N )  /\  F  e.  ( EE `  N ) ) )  ->  ( <. A ,  B >.  Seg<_  <. E ,  F >.  <->  E. w  e.  ( EE `  N ) ( w  Btwn  <. E ,  F >.  /\  <. A ,  B >.Cgr <. E ,  w >. ) ) )
6550, 51, 52, 57, 58, 64syl122anc 1235 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  ( <. A ,  B >.  Seg<_  <. E ,  F >.  <->  E. w  e.  ( EE `  N ) ( w 
Btwn  <. E ,  F >.  /\  <. A ,  B >.Cgr
<. E ,  w >. ) ) )
6649, 63, 653imtr4d 268 1  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  (
( <. A ,  B >. 
Seg<_ 
<. C ,  D >.  /\ 
<. C ,  D >.  Seg<_  <. E ,  F >. )  ->  <. A ,  B >. 
Seg<_ 
<. E ,  F >. ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 971    e. wcel 1823   E.wrex 2805   <.cop 4022   class class class wbr 4439   ` cfv 5570   NNcn 10531   EEcee 24396    Btwn cbtwn 24397  Cgrccgr 24398  Cgr3ccgr3 29917    Seg<_ csegle 29987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-inf2 8049  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-fal 1404  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-se 4828  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-isom 5579  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-1o 7122  df-oadd 7126  df-er 7303  df-map 7414  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-sup 7893  df-oi 7927  df-card 8311  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-2 10590  df-3 10591  df-n0 10792  df-z 10861  df-uz 11083  df-rp 11222  df-ico 11538  df-icc 11539  df-fz 11676  df-fzo 11800  df-seq 12093  df-exp 12152  df-hash 12391  df-cj 13017  df-re 13018  df-im 13019  df-sqrt 13153  df-abs 13154  df-clim 13396  df-sum 13594  df-ee 24399  df-btwn 24400  df-cgr 24401  df-ofs 29864  df-cgr3 29922  df-segle 29988
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator