Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  seglecgr12im Structured version   Visualization version   Unicode version

Theorem seglecgr12im 30925
Description: Substitution law for segment comparison under congruence. Theorem 5.6 of [Schwabhauser] p. 42. (Contributed by Scott Fenton, 11-Oct-2013.)
Assertion
Ref Expression
seglecgr12im  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( <. A ,  B >.Cgr
<. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >.  /\ 
<. A ,  B >.  Seg<_  <. C ,  D >. )  ->  <. E ,  F >. 
Seg<_ 
<. G ,  H >. ) )

Proof of Theorem seglecgr12im
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprrl 779 . . . . . . . . 9  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  (
( <. A ,  B >.Cgr
<. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. )  /\  ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. ) ) )  ->  y  Btwn  <. C ,  D >. )
2 simprlr 778 . . . . . . . . 9  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  (
( <. A ,  B >.Cgr
<. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. )  /\  ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. ) ) )  ->  <. C ,  D >.Cgr <. G ,  H >. )
3 simpl11 1089 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  ->  N  e.  NN )
4 simpl21 1092 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  ->  C  e.  ( EE `  N
) )
5 simpr 467 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  ->  y  e.  ( EE `  N
) )
6 simpl22 1093 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  ->  D  e.  ( EE `  N
) )
7 simpl32 1096 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  ->  G  e.  ( EE `  N
) )
8 simpl33 1097 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  ->  H  e.  ( EE `  N
) )
9 cgrxfr 30870 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( C  e.  ( EE `  N )  /\  y  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) )  /\  ( G  e.  ( EE `  N )  /\  H  e.  ( EE `  N
) ) )  -> 
( ( y  Btwn  <. C ,  D >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. )  ->  E. z  e.  ( EE `  N ) ( z  Btwn  <. G ,  H >.  /\  <. C ,  <. y ,  D >. >.Cgr3 <. G ,  <. z ,  H >. >. ) ) )
103, 4, 5, 6, 7, 8, 9syl132anc 1294 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  ->  (
( y  Btwn  <. C ,  D >.  /\  <. C ,  D >.Cgr <. G ,  H >. )  ->  E. z  e.  ( EE `  N
) ( z  Btwn  <. G ,  H >.  /\ 
<. C ,  <. y ,  D >. >.Cgr3 <. G ,  <. z ,  H >. >. )
) )
1110adantr 471 . . . . . . . . 9  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  (
( <. A ,  B >.Cgr
<. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. )  /\  ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. ) ) )  ->  (
( y  Btwn  <. C ,  D >.  /\  <. C ,  D >.Cgr <. G ,  H >. )  ->  E. z  e.  ( EE `  N
) ( z  Btwn  <. G ,  H >.  /\ 
<. C ,  <. y ,  D >. >.Cgr3 <. G ,  <. z ,  H >. >. )
) )
121, 2, 11mp2and 690 . . . . . . . 8  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  (
( <. A ,  B >.Cgr
<. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. )  /\  ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. ) ) )  ->  E. z  e.  ( EE `  N
) ( z  Btwn  <. G ,  H >.  /\ 
<. C ,  <. y ,  D >. >.Cgr3 <. G ,  <. z ,  H >. >. )
)
13 anass 659 . . . . . . . . . . 11  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  z  e.  ( EE `  N
) )  <->  ( (
( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) ) )
14 simpl11 1089 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  ->  N  e.  NN )
15 simpl21 1092 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  ->  C  e.  ( EE `  N ) )
16 simprl 769 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  ->  y  e.  ( EE `  N ) )
17 simpl22 1093 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  ->  D  e.  ( EE `  N ) )
18 simpl32 1096 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  ->  G  e.  ( EE `  N ) )
19 simprr 771 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  ->  z  e.  ( EE `  N ) )
20 simpl33 1097 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  ->  H  e.  ( EE `  N ) )
21 brcgr3 30861 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  ( C  e.  ( EE `  N )  /\  y  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) )  /\  ( G  e.  ( EE `  N )  /\  z  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  ( <. C ,  <. y ,  D >. >.Cgr3 <. G ,  <. z ,  H >. >.  <->  ( <. C ,  y >.Cgr <. G , 
z >.  /\  <. C ,  D >.Cgr <. G ,  H >.  /\  <. y ,  D >.Cgr
<. z ,  H >. ) ) )
2214, 15, 16, 17, 18, 19, 20, 21syl133anc 1299 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  ->  ( <. C ,  <. y ,  D >. >.Cgr3 <. G ,  <. z ,  H >. >. 
<->  ( <. C ,  y
>.Cgr <. G ,  z
>.  /\  <. C ,  D >.Cgr
<. G ,  H >.  /\ 
<. y ,  D >.Cgr <.
z ,  H >. ) ) )
2322adantr 471 . . . . . . . . . . . . 13  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  ( ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. )  /\  ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. ) ) )  ->  ( <. C ,  <. y ,  D >. >.Cgr3 <. G ,  <. z ,  H >. >.  <->  ( <. C ,  y >.Cgr <. G , 
z >.  /\  <. C ,  D >.Cgr <. G ,  H >.  /\  <. y ,  D >.Cgr
<. z ,  H >. ) ) )
24 df-3an 993 . . . . . . . . . . . . . . 15  |-  ( ( ( <. A ,  B >.Cgr
<. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. )  /\  ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  /\  ( <. C , 
y >.Cgr <. G ,  z
>.  /\  <. C ,  D >.Cgr
<. G ,  H >.  /\ 
<. y ,  D >.Cgr <.
z ,  H >. ) )  <->  ( ( (
<. A ,  B >.Cgr <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. )  /\  ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. ) )  /\  ( <. C ,  y >.Cgr <. G ,  z >.  /\ 
<. C ,  D >.Cgr <. G ,  H >.  /\ 
<. y ,  D >.Cgr <.
z ,  H >. ) ) )
25 simpl23 1094 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  ->  E  e.  ( EE `  N ) )
26 simpl31 1095 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  ->  F  e.  ( EE `  N ) )
27 simpl12 1090 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  ->  A  e.  ( EE `  N ) )
28 simpl13 1091 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  ->  B  e.  ( EE `  N ) )
29 simpr1l 1071 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  ( ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. )  /\  ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  /\  ( <. C , 
y >.Cgr <. G ,  z
>.  /\  <. C ,  D >.Cgr
<. G ,  H >.  /\ 
<. y ,  D >.Cgr <.
z ,  H >. ) ) )  ->  <. A ,  B >.Cgr <. E ,  F >. )
30 simpr2r 1074 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  ( ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. )  /\  ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  /\  ( <. C , 
y >.Cgr <. G ,  z
>.  /\  <. C ,  D >.Cgr
<. G ,  H >.  /\ 
<. y ,  D >.Cgr <.
z ,  H >. ) ) )  ->  <. A ,  B >.Cgr <. C ,  y
>. )
3114, 27, 28, 25, 26, 15, 16, 29, 30cgrtr4and 30801 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  ( ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. )  /\  ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  /\  ( <. C , 
y >.Cgr <. G ,  z
>.  /\  <. C ,  D >.Cgr
<. G ,  H >.  /\ 
<. y ,  D >.Cgr <.
z ,  H >. ) ) )  ->  <. E ,  F >.Cgr <. C ,  y
>. )
32 simpr31 1104 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  ( ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. )  /\  ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  /\  ( <. C , 
y >.Cgr <. G ,  z
>.  /\  <. C ,  D >.Cgr
<. G ,  H >.  /\ 
<. y ,  D >.Cgr <.
z ,  H >. ) ) )  ->  <. C , 
y >.Cgr <. G ,  z
>. )
3314, 25, 26, 15, 16, 18, 19, 31, 32cgrtrand 30808 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  ( ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. )  /\  ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  /\  ( <. C , 
y >.Cgr <. G ,  z
>.  /\  <. C ,  D >.Cgr
<. G ,  H >.  /\ 
<. y ,  D >.Cgr <.
z ,  H >. ) ) )  ->  <. E ,  F >.Cgr <. G ,  z
>. )
3424, 33sylan2br 483 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  ( ( (
<. A ,  B >.Cgr <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. )  /\  ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. ) )  /\  ( <. C ,  y >.Cgr <. G ,  z >.  /\ 
<. C ,  D >.Cgr <. G ,  H >.  /\ 
<. y ,  D >.Cgr <.
z ,  H >. ) ) )  ->  <. E ,  F >.Cgr <. G ,  z
>. )
3534expr 624 . . . . . . . . . . . . 13  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  ( ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. )  /\  ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. ) ) )  ->  (
( <. C ,  y
>.Cgr <. G ,  z
>.  /\  <. C ,  D >.Cgr
<. G ,  H >.  /\ 
<. y ,  D >.Cgr <.
z ,  H >. )  ->  <. E ,  F >.Cgr
<. G ,  z >.
) )
3623, 35sylbid 223 . . . . . . . . . . . 12  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  ( ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. )  /\  ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. ) ) )  ->  ( <. C ,  <. y ,  D >. >.Cgr3 <. G ,  <. z ,  H >. >.  ->  <. E ,  F >.Cgr <. G ,  z
>. ) )
3736anim2d 573 . . . . . . . . . . 11  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  ( ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. )  /\  ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. ) ) )  ->  (
( z  Btwn  <. G ,  H >.  /\  <. C ,  <. y ,  D >. >.Cgr3 <. G ,  <. z ,  H >. >. )  ->  (
z  Btwn  <. G ,  H >.  /\  <. E ,  F >.Cgr <. G ,  z
>. ) ) )
3813, 37sylanb 479 . . . . . . . . . 10  |-  ( ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  z  e.  ( EE `  N
) )  /\  (
( <. A ,  B >.Cgr
<. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. )  /\  ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. ) ) )  ->  (
( z  Btwn  <. G ,  H >.  /\  <. C ,  <. y ,  D >. >.Cgr3 <. G ,  <. z ,  H >. >. )  ->  (
z  Btwn  <. G ,  H >.  /\  <. E ,  F >.Cgr <. G ,  z
>. ) ) )
3938an32s 818 . . . . . . . . 9  |-  ( ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  (
( <. A ,  B >.Cgr
<. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. )  /\  ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. ) ) )  /\  z  e.  ( EE `  N
) )  ->  (
( z  Btwn  <. G ,  H >.  /\  <. C ,  <. y ,  D >. >.Cgr3 <. G ,  <. z ,  H >. >. )  ->  (
z  Btwn  <. G ,  H >.  /\  <. E ,  F >.Cgr <. G ,  z
>. ) ) )
4039reximdva 2873 . . . . . . . 8  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  (
( <. A ,  B >.Cgr
<. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. )  /\  ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. ) ) )  ->  ( E. z  e.  ( EE `  N ) ( z  Btwn  <. G ,  H >.  /\  <. C ,  <. y ,  D >. >.Cgr3 <. G ,  <. z ,  H >. >. )  ->  E. z  e.  ( EE `  N
) ( z  Btwn  <. G ,  H >.  /\ 
<. E ,  F >.Cgr <. G ,  z >. ) ) )
4112, 40mpd 15 . . . . . . 7  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  (
( <. A ,  B >.Cgr
<. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. )  /\  ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. ) ) )  ->  E. z  e.  ( EE `  N
) ( z  Btwn  <. G ,  H >.  /\ 
<. E ,  F >.Cgr <. G ,  z >. ) )
4241expr 624 . . . . . 6  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. ) )  ->  ( (
y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  ->  E. z  e.  ( EE `  N
) ( z  Btwn  <. G ,  H >.  /\ 
<. E ,  F >.Cgr <. G ,  z >. ) ) )
4342an32s 818 . . . . 5  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. ) )  /\  y  e.  ( EE `  N
) )  ->  (
( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  ->  E. z  e.  ( EE `  N
) ( z  Btwn  <. G ,  H >.  /\ 
<. E ,  F >.Cgr <. G ,  z >. ) ) )
4443rexlimdva 2890 . . . 4  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. ) )  ->  ( E. y  e.  ( EE `  N ) ( y 
Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr
<. C ,  y >.
)  ->  E. z  e.  ( EE `  N
) ( z  Btwn  <. G ,  H >.  /\ 
<. E ,  F >.Cgr <. G ,  z >. ) ) )
45 simp11 1044 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  N  e.  NN )
46 simp12 1045 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  A  e.  ( EE `  N
) )
47 simp13 1046 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  B  e.  ( EE `  N
) )
48 simp21 1047 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  C  e.  ( EE `  N
) )
49 simp22 1048 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  D  e.  ( EE `  N
) )
50 brsegle 30923 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  ( <. A ,  B >.  Seg<_  <. C ,  D >.  <->  E. y  e.  ( EE `  N ) ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. ) ) )
5145, 46, 47, 48, 49, 50syl122anc 1285 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  ( <. A ,  B >.  Seg<_  <. C ,  D >.  <->  E. y  e.  ( EE `  N ) ( y 
Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr
<. C ,  y >.
) ) )
5251adantr 471 . . . 4  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. ) )  ->  ( <. A ,  B >.  Seg<_  <. C ,  D >. 
<->  E. y  e.  ( EE `  N ) ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. ) ) )
53 simp23 1049 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  E  e.  ( EE `  N
) )
54 simp31 1050 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  F  e.  ( EE `  N
) )
55 simp32 1051 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  G  e.  ( EE `  N
) )
56 simp33 1052 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  H  e.  ( EE `  N
) )
57 brsegle 30923 . . . . . 6  |-  ( ( N  e.  NN  /\  ( E  e.  ( EE `  N )  /\  F  e.  ( EE `  N ) )  /\  ( G  e.  ( EE `  N )  /\  H  e.  ( EE `  N ) ) )  ->  ( <. E ,  F >.  Seg<_  <. G ,  H >.  <->  E. z  e.  ( EE `  N ) ( z  Btwn  <. G ,  H >.  /\  <. E ,  F >.Cgr <. G ,  z
>. ) ) )
5845, 53, 54, 55, 56, 57syl122anc 1285 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  ( <. E ,  F >.  Seg<_  <. G ,  H >.  <->  E. z  e.  ( EE `  N ) ( z 
Btwn  <. G ,  H >.  /\  <. E ,  F >.Cgr
<. G ,  z >.
) ) )
5958adantr 471 . . . 4  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. ) )  ->  ( <. E ,  F >.  Seg<_  <. G ,  H >. 
<->  E. z  e.  ( EE `  N ) ( z  Btwn  <. G ,  H >.  /\  <. E ,  F >.Cgr <. G ,  z
>. ) ) )
6044, 52, 593imtr4d 276 . . 3  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. ) )  ->  ( <. A ,  B >.  Seg<_  <. C ,  D >.  ->  <. E ,  F >.  Seg<_  <. G ,  H >. ) )
6160exp32 614 . 2  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  ( <. A ,  B >.Cgr <. E ,  F >.  -> 
( <. C ,  D >.Cgr
<. G ,  H >.  -> 
( <. A ,  B >. 
Seg<_ 
<. C ,  D >.  ->  <. E ,  F >.  Seg<_  <. G ,  H >. ) ) ) )
62613impd 1231 1  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( <. A ,  B >.Cgr
<. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >.  /\ 
<. A ,  B >.  Seg<_  <. C ,  D >. )  ->  <. E ,  F >. 
Seg<_ 
<. G ,  H >. ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 375    /\ w3a 991    e. wcel 1897   E.wrex 2749   <.cop 3985   class class class wbr 4415   ` cfv 5600   NNcn 10636   EEcee 24966    Btwn cbtwn 24967  Cgrccgr 24968  Cgr3ccgr3 30851    Seg<_ csegle 30921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1679  ax-4 1692  ax-5 1768  ax-6 1815  ax-7 1861  ax-8 1899  ax-9 1906  ax-10 1925  ax-11 1930  ax-12 1943  ax-13 2101  ax-ext 2441  ax-rep 4528  ax-sep 4538  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6609  ax-inf2 8171  ax-cnex 9620  ax-resscn 9621  ax-1cn 9622  ax-icn 9623  ax-addcl 9624  ax-addrcl 9625  ax-mulcl 9626  ax-mulrcl 9627  ax-mulcom 9628  ax-addass 9629  ax-mulass 9630  ax-distr 9631  ax-i2m1 9632  ax-1ne0 9633  ax-1rid 9634  ax-rnegex 9635  ax-rrecex 9636  ax-cnre 9637  ax-pre-lttri 9638  ax-pre-lttrn 9639  ax-pre-ltadd 9640  ax-pre-mulgt0 9641  ax-pre-sup 9642
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3or 992  df-3an 993  df-tru 1457  df-fal 1460  df-ex 1674  df-nf 1678  df-sb 1808  df-eu 2313  df-mo 2314  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2591  df-ne 2634  df-nel 2635  df-ral 2753  df-rex 2754  df-reu 2755  df-rmo 2756  df-rab 2757  df-v 3058  df-sbc 3279  df-csb 3375  df-dif 3418  df-un 3420  df-in 3422  df-ss 3429  df-pss 3431  df-nul 3743  df-if 3893  df-pw 3964  df-sn 3980  df-pr 3982  df-tp 3984  df-op 3986  df-uni 4212  df-int 4248  df-iun 4293  df-br 4416  df-opab 4475  df-mpt 4476  df-tr 4511  df-eprel 4763  df-id 4767  df-po 4773  df-so 4774  df-fr 4811  df-se 4812  df-we 4813  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-pred 5398  df-ord 5444  df-on 5445  df-lim 5446  df-suc 5447  df-iota 5564  df-fun 5602  df-fn 5603  df-f 5604  df-f1 5605  df-fo 5606  df-f1o 5607  df-fv 5608  df-isom 5609  df-riota 6276  df-ov 6317  df-oprab 6318  df-mpt2 6319  df-om 6719  df-1st 6819  df-2nd 6820  df-wrecs 7053  df-recs 7115  df-rdg 7153  df-1o 7207  df-oadd 7211  df-er 7388  df-map 7499  df-en 7595  df-dom 7596  df-sdom 7597  df-fin 7598  df-sup 7981  df-oi 8050  df-card 8398  df-pnf 9702  df-mnf 9703  df-xr 9704  df-ltxr 9705  df-le 9706  df-sub 9887  df-neg 9888  df-div 10297  df-nn 10637  df-2 10695  df-3 10696  df-n0 10898  df-z 10966  df-uz 11188  df-rp 11331  df-ico 11669  df-icc 11670  df-fz 11813  df-fzo 11946  df-seq 12245  df-exp 12304  df-hash 12547  df-cj 13210  df-re 13211  df-im 13212  df-sqrt 13346  df-abs 13347  df-clim 13600  df-sum 13801  df-ee 24969  df-btwn 24970  df-cgr 24971  df-ofs 30798  df-cgr3 30856  df-segle 30922
This theorem is referenced by:  seglecgr12  30926
  Copyright terms: Public domain W3C validator