Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  seglecgr12im Structured version   Unicode version

Theorem seglecgr12im 30826
Description: Substitution law for segment comparison under congruence. Theorem 5.6 of [Schwabhauser] p. 42. (Contributed by Scott Fenton, 11-Oct-2013.)
Assertion
Ref Expression
seglecgr12im  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( <. A ,  B >.Cgr
<. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >.  /\ 
<. A ,  B >.  Seg<_  <. C ,  D >. )  ->  <. E ,  F >. 
Seg<_ 
<. G ,  H >. ) )

Proof of Theorem seglecgr12im
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprrl 772 . . . . . . . . 9  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  (
( <. A ,  B >.Cgr
<. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. )  /\  ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. ) ) )  ->  y  Btwn  <. C ,  D >. )
2 simprlr 771 . . . . . . . . 9  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  (
( <. A ,  B >.Cgr
<. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. )  /\  ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. ) ) )  ->  <. C ,  D >.Cgr <. G ,  H >. )
3 simpl11 1080 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  ->  N  e.  NN )
4 simpl21 1083 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  ->  C  e.  ( EE `  N
) )
5 simpr 462 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  ->  y  e.  ( EE `  N
) )
6 simpl22 1084 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  ->  D  e.  ( EE `  N
) )
7 simpl32 1087 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  ->  G  e.  ( EE `  N
) )
8 simpl33 1088 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  ->  H  e.  ( EE `  N
) )
9 cgrxfr 30771 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( C  e.  ( EE `  N )  /\  y  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) )  /\  ( G  e.  ( EE `  N )  /\  H  e.  ( EE `  N
) ) )  -> 
( ( y  Btwn  <. C ,  D >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. )  ->  E. z  e.  ( EE `  N ) ( z  Btwn  <. G ,  H >.  /\  <. C ,  <. y ,  D >. >.Cgr3 <. G ,  <. z ,  H >. >. ) ) )
103, 4, 5, 6, 7, 8, 9syl132anc 1282 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  ->  (
( y  Btwn  <. C ,  D >.  /\  <. C ,  D >.Cgr <. G ,  H >. )  ->  E. z  e.  ( EE `  N
) ( z  Btwn  <. G ,  H >.  /\ 
<. C ,  <. y ,  D >. >.Cgr3 <. G ,  <. z ,  H >. >. )
) )
1110adantr 466 . . . . . . . . 9  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  (
( <. A ,  B >.Cgr
<. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. )  /\  ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. ) ) )  ->  (
( y  Btwn  <. C ,  D >.  /\  <. C ,  D >.Cgr <. G ,  H >. )  ->  E. z  e.  ( EE `  N
) ( z  Btwn  <. G ,  H >.  /\ 
<. C ,  <. y ,  D >. >.Cgr3 <. G ,  <. z ,  H >. >. )
) )
121, 2, 11mp2and 683 . . . . . . . 8  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  (
( <. A ,  B >.Cgr
<. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. )  /\  ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. ) ) )  ->  E. z  e.  ( EE `  N
) ( z  Btwn  <. G ,  H >.  /\ 
<. C ,  <. y ,  D >. >.Cgr3 <. G ,  <. z ,  H >. >. )
)
13 anass 653 . . . . . . . . . . 11  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  z  e.  ( EE `  N
) )  <->  ( (
( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) ) )
14 simpl11 1080 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  ->  N  e.  NN )
15 simpl21 1083 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  ->  C  e.  ( EE `  N ) )
16 simprl 762 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  ->  y  e.  ( EE `  N ) )
17 simpl22 1084 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  ->  D  e.  ( EE `  N ) )
18 simpl32 1087 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  ->  G  e.  ( EE `  N ) )
19 simprr 764 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  ->  z  e.  ( EE `  N ) )
20 simpl33 1088 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  ->  H  e.  ( EE `  N ) )
21 brcgr3 30762 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  ( C  e.  ( EE `  N )  /\  y  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) )  /\  ( G  e.  ( EE `  N )  /\  z  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  ( <. C ,  <. y ,  D >. >.Cgr3 <. G ,  <. z ,  H >. >.  <->  ( <. C ,  y >.Cgr <. G , 
z >.  /\  <. C ,  D >.Cgr <. G ,  H >.  /\  <. y ,  D >.Cgr
<. z ,  H >. ) ) )
2214, 15, 16, 17, 18, 19, 20, 21syl133anc 1287 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  ->  ( <. C ,  <. y ,  D >. >.Cgr3 <. G ,  <. z ,  H >. >. 
<->  ( <. C ,  y
>.Cgr <. G ,  z
>.  /\  <. C ,  D >.Cgr
<. G ,  H >.  /\ 
<. y ,  D >.Cgr <.
z ,  H >. ) ) )
2322adantr 466 . . . . . . . . . . . . 13  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  ( ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. )  /\  ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. ) ) )  ->  ( <. C ,  <. y ,  D >. >.Cgr3 <. G ,  <. z ,  H >. >.  <->  ( <. C ,  y >.Cgr <. G , 
z >.  /\  <. C ,  D >.Cgr <. G ,  H >.  /\  <. y ,  D >.Cgr
<. z ,  H >. ) ) )
24 df-3an 984 . . . . . . . . . . . . . . 15  |-  ( ( ( <. A ,  B >.Cgr
<. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. )  /\  ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  /\  ( <. C , 
y >.Cgr <. G ,  z
>.  /\  <. C ,  D >.Cgr
<. G ,  H >.  /\ 
<. y ,  D >.Cgr <.
z ,  H >. ) )  <->  ( ( (
<. A ,  B >.Cgr <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. )  /\  ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. ) )  /\  ( <. C ,  y >.Cgr <. G ,  z >.  /\ 
<. C ,  D >.Cgr <. G ,  H >.  /\ 
<. y ,  D >.Cgr <.
z ,  H >. ) ) )
25 simpl23 1085 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  ->  E  e.  ( EE `  N ) )
26 simpl31 1086 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  ->  F  e.  ( EE `  N ) )
27 simpl12 1081 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  ->  A  e.  ( EE `  N ) )
28 simpl13 1082 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  ->  B  e.  ( EE `  N ) )
29 simpr1l 1062 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  ( ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. )  /\  ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  /\  ( <. C , 
y >.Cgr <. G ,  z
>.  /\  <. C ,  D >.Cgr
<. G ,  H >.  /\ 
<. y ,  D >.Cgr <.
z ,  H >. ) ) )  ->  <. A ,  B >.Cgr <. E ,  F >. )
30 simpr2r 1065 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  ( ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. )  /\  ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  /\  ( <. C , 
y >.Cgr <. G ,  z
>.  /\  <. C ,  D >.Cgr
<. G ,  H >.  /\ 
<. y ,  D >.Cgr <.
z ,  H >. ) ) )  ->  <. A ,  B >.Cgr <. C ,  y
>. )
3114, 27, 28, 25, 26, 15, 16, 29, 30cgrtr4and 30702 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  ( ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. )  /\  ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  /\  ( <. C , 
y >.Cgr <. G ,  z
>.  /\  <. C ,  D >.Cgr
<. G ,  H >.  /\ 
<. y ,  D >.Cgr <.
z ,  H >. ) ) )  ->  <. E ,  F >.Cgr <. C ,  y
>. )
32 simpr31 1095 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  ( ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. )  /\  ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  /\  ( <. C , 
y >.Cgr <. G ,  z
>.  /\  <. C ,  D >.Cgr
<. G ,  H >.  /\ 
<. y ,  D >.Cgr <.
z ,  H >. ) ) )  ->  <. C , 
y >.Cgr <. G ,  z
>. )
3314, 25, 26, 15, 16, 18, 19, 31, 32cgrtrand 30709 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  ( ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. )  /\  ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  /\  ( <. C , 
y >.Cgr <. G ,  z
>.  /\  <. C ,  D >.Cgr
<. G ,  H >.  /\ 
<. y ,  D >.Cgr <.
z ,  H >. ) ) )  ->  <. E ,  F >.Cgr <. G ,  z
>. )
3424, 33sylan2br 478 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  ( ( (
<. A ,  B >.Cgr <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. )  /\  ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. ) )  /\  ( <. C ,  y >.Cgr <. G ,  z >.  /\ 
<. C ,  D >.Cgr <. G ,  H >.  /\ 
<. y ,  D >.Cgr <.
z ,  H >. ) ) )  ->  <. E ,  F >.Cgr <. G ,  z
>. )
3534expr 618 . . . . . . . . . . . . 13  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  ( ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. )  /\  ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. ) ) )  ->  (
( <. C ,  y
>.Cgr <. G ,  z
>.  /\  <. C ,  D >.Cgr
<. G ,  H >.  /\ 
<. y ,  D >.Cgr <.
z ,  H >. )  ->  <. E ,  F >.Cgr
<. G ,  z >.
) )
3623, 35sylbid 218 . . . . . . . . . . . 12  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  ( ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. )  /\  ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. ) ) )  ->  ( <. C ,  <. y ,  D >. >.Cgr3 <. G ,  <. z ,  H >. >.  ->  <. E ,  F >.Cgr <. G ,  z
>. ) )
3736anim2d 567 . . . . . . . . . . 11  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
y  e.  ( EE
`  N )  /\  z  e.  ( EE `  N ) ) )  /\  ( ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. )  /\  ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. ) ) )  ->  (
( z  Btwn  <. G ,  H >.  /\  <. C ,  <. y ,  D >. >.Cgr3 <. G ,  <. z ,  H >. >. )  ->  (
z  Btwn  <. G ,  H >.  /\  <. E ,  F >.Cgr <. G ,  z
>. ) ) )
3813, 37sylanb 474 . . . . . . . . . 10  |-  ( ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  z  e.  ( EE `  N
) )  /\  (
( <. A ,  B >.Cgr
<. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. )  /\  ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. ) ) )  ->  (
( z  Btwn  <. G ,  H >.  /\  <. C ,  <. y ,  D >. >.Cgr3 <. G ,  <. z ,  H >. >. )  ->  (
z  Btwn  <. G ,  H >.  /\  <. E ,  F >.Cgr <. G ,  z
>. ) ) )
3938an32s 811 . . . . . . . . 9  |-  ( ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  (
( <. A ,  B >.Cgr
<. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. )  /\  ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. ) ) )  /\  z  e.  ( EE `  N
) )  ->  (
( z  Btwn  <. G ,  H >.  /\  <. C ,  <. y ,  D >. >.Cgr3 <. G ,  <. z ,  H >. >. )  ->  (
z  Btwn  <. G ,  H >.  /\  <. E ,  F >.Cgr <. G ,  z
>. ) ) )
4039reximdva 2839 . . . . . . . 8  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  (
( <. A ,  B >.Cgr
<. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. )  /\  ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. ) ) )  ->  ( E. z  e.  ( EE `  N ) ( z  Btwn  <. G ,  H >.  /\  <. C ,  <. y ,  D >. >.Cgr3 <. G ,  <. z ,  H >. >. )  ->  E. z  e.  ( EE `  N
) ( z  Btwn  <. G ,  H >.  /\ 
<. E ,  F >.Cgr <. G ,  z >. ) ) )
4112, 40mpd 15 . . . . . . 7  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  (
( <. A ,  B >.Cgr
<. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. )  /\  ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. ) ) )  ->  E. z  e.  ( EE `  N
) ( z  Btwn  <. G ,  H >.  /\ 
<. E ,  F >.Cgr <. G ,  z >. ) )
4241expr 618 . . . . . 6  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  y  e.  ( EE `  N
) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. ) )  ->  ( (
y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  ->  E. z  e.  ( EE `  N
) ( z  Btwn  <. G ,  H >.  /\ 
<. E ,  F >.Cgr <. G ,  z >. ) ) )
4342an32s 811 . . . . 5  |-  ( ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. ) )  /\  y  e.  ( EE `  N
) )  ->  (
( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  ->  E. z  e.  ( EE `  N
) ( z  Btwn  <. G ,  H >.  /\ 
<. E ,  F >.Cgr <. G ,  z >. ) ) )
4443rexlimdva 2856 . . . 4  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. ) )  ->  ( E. y  e.  ( EE `  N ) ( y 
Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr
<. C ,  y >.
)  ->  E. z  e.  ( EE `  N
) ( z  Btwn  <. G ,  H >.  /\ 
<. E ,  F >.Cgr <. G ,  z >. ) ) )
45 simp11 1035 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  N  e.  NN )
46 simp12 1036 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  A  e.  ( EE `  N
) )
47 simp13 1037 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  B  e.  ( EE `  N
) )
48 simp21 1038 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  C  e.  ( EE `  N
) )
49 simp22 1039 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  D  e.  ( EE `  N
) )
50 brsegle 30824 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  ( <. A ,  B >.  Seg<_  <. C ,  D >.  <->  E. y  e.  ( EE `  N ) ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. ) ) )
5145, 46, 47, 48, 49, 50syl122anc 1273 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  ( <. A ,  B >.  Seg<_  <. C ,  D >.  <->  E. y  e.  ( EE `  N ) ( y 
Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr
<. C ,  y >.
) ) )
5251adantr 466 . . . 4  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. ) )  ->  ( <. A ,  B >.  Seg<_  <. C ,  D >. 
<->  E. y  e.  ( EE `  N ) ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. ) ) )
53 simp23 1040 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  E  e.  ( EE `  N
) )
54 simp31 1041 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  F  e.  ( EE `  N
) )
55 simp32 1042 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  G  e.  ( EE `  N
) )
56 simp33 1043 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  H  e.  ( EE `  N
) )
57 brsegle 30824 . . . . . 6  |-  ( ( N  e.  NN  /\  ( E  e.  ( EE `  N )  /\  F  e.  ( EE `  N ) )  /\  ( G  e.  ( EE `  N )  /\  H  e.  ( EE `  N ) ) )  ->  ( <. E ,  F >.  Seg<_  <. G ,  H >.  <->  E. z  e.  ( EE `  N ) ( z  Btwn  <. G ,  H >.  /\  <. E ,  F >.Cgr <. G ,  z
>. ) ) )
5845, 53, 54, 55, 56, 57syl122anc 1273 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  ( <. E ,  F >.  Seg<_  <. G ,  H >.  <->  E. z  e.  ( EE `  N ) ( z 
Btwn  <. G ,  H >.  /\  <. E ,  F >.Cgr
<. G ,  z >.
) ) )
5958adantr 466 . . . 4  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. ) )  ->  ( <. E ,  F >.  Seg<_  <. G ,  H >. 
<->  E. z  e.  ( EE `  N ) ( z  Btwn  <. G ,  H >.  /\  <. E ,  F >.Cgr <. G ,  z
>. ) ) )
6044, 52, 593imtr4d 271 . . 3  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >. ) )  ->  ( <. A ,  B >.  Seg<_  <. C ,  D >.  ->  <. E ,  F >.  Seg<_  <. G ,  H >. ) )
6160exp32 608 . 2  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  ( <. A ,  B >.Cgr <. E ,  F >.  -> 
( <. C ,  D >.Cgr
<. G ,  H >.  -> 
( <. A ,  B >. 
Seg<_ 
<. C ,  D >.  ->  <. E ,  F >.  Seg<_  <. G ,  H >. ) ) ) )
62613impd 1219 1  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( <. A ,  B >.Cgr
<. E ,  F >.  /\ 
<. C ,  D >.Cgr <. G ,  H >.  /\ 
<. A ,  B >.  Seg<_  <. C ,  D >. )  ->  <. E ,  F >. 
Seg<_ 
<. G ,  H >. ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    e. wcel 1872   E.wrex 2715   <.cop 3947   class class class wbr 4366   ` cfv 5544   NNcn 10560   EEcee 24860    Btwn cbtwn 24861  Cgrccgr 24862  Cgr3ccgr3 30752    Seg<_ csegle 30822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2063  ax-ext 2408  ax-rep 4479  ax-sep 4489  ax-nul 4498  ax-pow 4545  ax-pr 4603  ax-un 6541  ax-inf2 8099  ax-cnex 9546  ax-resscn 9547  ax-1cn 9548  ax-icn 9549  ax-addcl 9550  ax-addrcl 9551  ax-mulcl 9552  ax-mulrcl 9553  ax-mulcom 9554  ax-addass 9555  ax-mulass 9556  ax-distr 9557  ax-i2m1 9558  ax-1ne0 9559  ax-1rid 9560  ax-rnegex 9561  ax-rrecex 9562  ax-cnre 9563  ax-pre-lttri 9564  ax-pre-lttrn 9565  ax-pre-ltadd 9566  ax-pre-mulgt0 9567  ax-pre-sup 9568
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2280  df-mo 2281  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2558  df-ne 2601  df-nel 2602  df-ral 2719  df-rex 2720  df-reu 2721  df-rmo 2722  df-rab 2723  df-v 3024  df-sbc 3243  df-csb 3339  df-dif 3382  df-un 3384  df-in 3386  df-ss 3393  df-pss 3395  df-nul 3705  df-if 3855  df-pw 3926  df-sn 3942  df-pr 3944  df-tp 3946  df-op 3948  df-uni 4163  df-int 4199  df-iun 4244  df-br 4367  df-opab 4426  df-mpt 4427  df-tr 4462  df-eprel 4707  df-id 4711  df-po 4717  df-so 4718  df-fr 4755  df-se 4756  df-we 4757  df-xp 4802  df-rel 4803  df-cnv 4804  df-co 4805  df-dm 4806  df-rn 4807  df-res 4808  df-ima 4809  df-pred 5342  df-ord 5388  df-on 5389  df-lim 5390  df-suc 5391  df-iota 5508  df-fun 5546  df-fn 5547  df-f 5548  df-f1 5549  df-fo 5550  df-f1o 5551  df-fv 5552  df-isom 5553  df-riota 6211  df-ov 6252  df-oprab 6253  df-mpt2 6254  df-om 6651  df-1st 6751  df-2nd 6752  df-wrecs 6983  df-recs 7045  df-rdg 7083  df-1o 7137  df-oadd 7141  df-er 7318  df-map 7429  df-en 7525  df-dom 7526  df-sdom 7527  df-fin 7528  df-sup 7909  df-oi 7978  df-card 8325  df-pnf 9628  df-mnf 9629  df-xr 9630  df-ltxr 9631  df-le 9632  df-sub 9813  df-neg 9814  df-div 10221  df-nn 10561  df-2 10619  df-3 10620  df-n0 10821  df-z 10889  df-uz 11111  df-rp 11254  df-ico 11592  df-icc 11593  df-fz 11736  df-fzo 11867  df-seq 12164  df-exp 12223  df-hash 12466  df-cj 13106  df-re 13107  df-im 13108  df-sqrt 13242  df-abs 13243  df-clim 13495  df-sum 13696  df-ee 24863  df-btwn 24864  df-cgr 24865  df-ofs 30699  df-cgr3 30757  df-segle 30823
This theorem is referenced by:  seglecgr12  30827
  Copyright terms: Public domain W3C validator