Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  segleantisym Structured version   Unicode version

Theorem segleantisym 29993
Description: Antisymmetry law for segment comparison. Theorem 5.9 of [Schwabhauser] p. 42. (Contributed by Scott Fenton, 14-Oct-2013.)
Assertion
Ref Expression
segleantisym  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  ( ( <. A ,  B >.  Seg<_  <. C ,  D >.  /\ 
<. C ,  D >.  Seg<_  <. A ,  B >. )  ->  <. A ,  B >.Cgr
<. C ,  D >. ) )

Proof of Theorem segleantisym
Dummy variables  y 
t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brsegle 29986 . . . 4  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  ( <. A ,  B >.  Seg<_  <. C ,  D >.  <->  E. y  e.  ( EE `  N ) ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. ) ) )
2 brsegle2 29987 . . . . 5  |-  ( ( N  e.  NN  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) )  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  ->  ( <. C ,  D >.  Seg<_  <. A ,  B >.  <->  E. t  e.  ( EE `  N ) ( D  Btwn  <. C , 
t >.  /\  <. C , 
t >.Cgr <. A ,  B >. ) ) )
323com23 1200 . . . 4  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  ( <. C ,  D >.  Seg<_  <. A ,  B >.  <->  E. t  e.  ( EE `  N ) ( D  Btwn  <. C , 
t >.  /\  <. C , 
t >.Cgr <. A ,  B >. ) ) )
41, 3anbi12d 708 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  ( ( <. A ,  B >.  Seg<_  <. C ,  D >.  /\ 
<. C ,  D >.  Seg<_  <. A ,  B >. )  <-> 
( E. y  e.  ( EE `  N
) ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  /\  E. t  e.  ( EE `  N
) ( D  Btwn  <. C ,  t >.  /\ 
<. C ,  t >.Cgr <. A ,  B >. ) ) ) )
5 reeanv 3022 . . 3  |-  ( E. y  e.  ( EE
`  N ) E. t  e.  ( EE
`  N ) ( ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  /\  ( D  Btwn  <. C ,  t
>.  /\  <. C ,  t
>.Cgr <. A ,  B >. ) )  <->  ( E. y  e.  ( EE `  N ) ( y 
Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr
<. C ,  y >.
)  /\  E. t  e.  ( EE `  N
) ( D  Btwn  <. C ,  t >.  /\ 
<. C ,  t >.Cgr <. A ,  B >. ) ) )
64, 5syl6bbr 263 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  ( ( <. A ,  B >.  Seg<_  <. C ,  D >.  /\ 
<. C ,  D >.  Seg<_  <. A ,  B >. )  <->  E. y  e.  ( EE `  N ) E. t  e.  ( EE
`  N ) ( ( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  /\  ( D  Btwn  <. C ,  t
>.  /\  <. C ,  t
>.Cgr <. A ,  B >. ) ) ) )
7 simpl1 997 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( y  e.  ( EE `  N )  /\  t  e.  ( EE `  N ) ) )  ->  N  e.  NN )
8 simpl3l 1049 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( y  e.  ( EE `  N )  /\  t  e.  ( EE `  N ) ) )  ->  C  e.  ( EE `  N
) )
9 simprr 755 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( y  e.  ( EE `  N )  /\  t  e.  ( EE `  N ) ) )  ->  t  e.  ( EE `  N
) )
10 simprl 754 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( y  e.  ( EE `  N )  /\  t  e.  ( EE `  N ) ) )  ->  y  e.  ( EE `  N
) )
11 simpl3r 1050 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( y  e.  ( EE `  N )  /\  t  e.  ( EE `  N ) ) )  ->  D  e.  ( EE `  N
) )
12 simprll 761 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( y  e.  ( EE `  N )  /\  t  e.  ( EE `  N ) ) )  /\  (
( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  /\  ( D  Btwn  <. C ,  t
>.  /\  <. C ,  t
>.Cgr <. A ,  B >. ) ) )  -> 
y  Btwn  <. C ,  D >. )
13 simprrl 763 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( y  e.  ( EE `  N )  /\  t  e.  ( EE `  N ) ) )  /\  (
( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  /\  ( D  Btwn  <. C ,  t
>.  /\  <. C ,  t
>.Cgr <. A ,  B >. ) ) )  ->  D  Btwn  <. C ,  t
>. )
147, 8, 10, 11, 9, 12, 13btwnexchand 29904 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( y  e.  ( EE `  N )  /\  t  e.  ( EE `  N ) ) )  /\  (
( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  /\  ( D  Btwn  <. C ,  t
>.  /\  <. C ,  t
>.Cgr <. A ,  B >. ) ) )  -> 
y  Btwn  <. C , 
t >. )
15 simpl2l 1047 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( y  e.  ( EE `  N )  /\  t  e.  ( EE `  N ) ) )  ->  A  e.  ( EE `  N
) )
16 simpl2r 1048 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( y  e.  ( EE `  N )  /\  t  e.  ( EE `  N ) ) )  ->  B  e.  ( EE `  N
) )
17 simprrr 764 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( y  e.  ( EE `  N )  /\  t  e.  ( EE `  N ) ) )  /\  (
( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  /\  ( D  Btwn  <. C ,  t
>.  /\  <. C ,  t
>.Cgr <. A ,  B >. ) ) )  ->  <. C ,  t >.Cgr <. A ,  B >. )
18 simprlr 762 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( y  e.  ( EE `  N )  /\  t  e.  ( EE `  N ) ) )  /\  (
( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  /\  ( D  Btwn  <. C ,  t
>.  /\  <. C ,  t
>.Cgr <. A ,  B >. ) ) )  ->  <. A ,  B >.Cgr <. C ,  y >. )
197, 8, 9, 15, 16, 8, 10, 17, 18cgrtrand 29871 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( y  e.  ( EE `  N )  /\  t  e.  ( EE `  N ) ) )  /\  (
( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  /\  ( D  Btwn  <. C ,  t
>.  /\  <. C ,  t
>.Cgr <. A ,  B >. ) ) )  ->  <. C ,  t >.Cgr <. C ,  y >.
)
207, 8, 9, 10, 14, 19endofsegidand 29964 . . . . 5  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( y  e.  ( EE `  N )  /\  t  e.  ( EE `  N ) ) )  /\  (
( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  /\  ( D  Btwn  <. C ,  t
>.  /\  <. C ,  t
>.Cgr <. A ,  B >. ) ) )  -> 
t  =  y )
21 opeq2 4204 . . . . . . . . . 10  |-  ( t  =  y  ->  <. C , 
t >.  =  <. C , 
y >. )
2221breq2d 4451 . . . . . . . . 9  |-  ( t  =  y  ->  ( D  Btwn  <. C ,  t
>. 
<->  D  Btwn  <. C , 
y >. ) )
2321breq1d 4449 . . . . . . . . 9  |-  ( t  =  y  ->  ( <. C ,  t >.Cgr <. A ,  B >.  <->  <. C ,  y >.Cgr <. A ,  B >. ) )
2422, 23anbi12d 708 . . . . . . . 8  |-  ( t  =  y  ->  (
( D  Btwn  <. C , 
t >.  /\  <. C , 
t >.Cgr <. A ,  B >. )  <->  ( D  Btwn  <. C ,  y >.  /\ 
<. C ,  y >.Cgr <. A ,  B >. ) ) )
2524anbi2d 701 . . . . . . 7  |-  ( t  =  y  ->  (
( ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  /\  ( D  Btwn  <. C ,  t >.  /\ 
<. C ,  t >.Cgr <. A ,  B >. ) )  <->  ( ( y 
Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr
<. C ,  y >.
)  /\  ( D  Btwn  <. C ,  y
>.  /\  <. C ,  y
>.Cgr <. A ,  B >. ) ) ) )
2625anbi2d 701 . . . . . 6  |-  ( t  =  y  ->  (
( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( y  e.  ( EE `  N )  /\  t  e.  ( EE `  N ) ) )  /\  (
( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  /\  ( D  Btwn  <. C ,  t
>.  /\  <. C ,  t
>.Cgr <. A ,  B >. ) ) )  <->  ( (
( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( y  e.  ( EE `  N )  /\  t  e.  ( EE `  N ) ) )  /\  (
( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  /\  ( D  Btwn  <. C ,  y
>.  /\  <. C ,  y
>.Cgr <. A ,  B >. ) ) ) ) )
27 simprrl 763 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( y  e.  ( EE `  N )  /\  t  e.  ( EE `  N ) ) )  /\  (
( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  /\  ( D  Btwn  <. C ,  y
>.  /\  <. C ,  y
>.Cgr <. A ,  B >. ) ) )  ->  D  Btwn  <. C ,  y
>. )
287, 11, 8, 10, 27btwncomand 29893 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( y  e.  ( EE `  N )  /\  t  e.  ( EE `  N ) ) )  /\  (
( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  /\  ( D  Btwn  <. C ,  y
>.  /\  <. C ,  y
>.Cgr <. A ,  B >. ) ) )  ->  D  Btwn  <. y ,  C >. )
29 simprll 761 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( y  e.  ( EE `  N )  /\  t  e.  ( EE `  N ) ) )  /\  (
( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  /\  ( D  Btwn  <. C ,  y
>.  /\  <. C ,  y
>.Cgr <. A ,  B >. ) ) )  -> 
y  Btwn  <. C ,  D >. )
307, 10, 8, 11, 29btwncomand 29893 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( y  e.  ( EE `  N )  /\  t  e.  ( EE `  N ) ) )  /\  (
( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  /\  ( D  Btwn  <. C ,  y
>.  /\  <. C ,  y
>.Cgr <. A ,  B >. ) ) )  -> 
y  Btwn  <. D ,  C >. )
31 btwnswapid 29895 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( D  e.  ( EE `  N )  /\  y  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( ( D  Btwn  <.
y ,  C >.  /\  y  Btwn  <. D ,  C >. )  ->  D  =  y ) )
327, 11, 10, 8, 31syl13anc 1228 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( y  e.  ( EE `  N )  /\  t  e.  ( EE `  N ) ) )  ->  (
( D  Btwn  <. y ,  C >.  /\  y  Btwn  <. D ,  C >. )  ->  D  =  y ) )
3332adantr 463 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( y  e.  ( EE `  N )  /\  t  e.  ( EE `  N ) ) )  /\  (
( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  /\  ( D  Btwn  <. C ,  y
>.  /\  <. C ,  y
>.Cgr <. A ,  B >. ) ) )  -> 
( ( D  Btwn  <.
y ,  C >.  /\  y  Btwn  <. D ,  C >. )  ->  D  =  y ) )
3428, 30, 33mp2and 677 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( y  e.  ( EE `  N )  /\  t  e.  ( EE `  N ) ) )  /\  (
( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  /\  ( D  Btwn  <. C ,  y
>.  /\  <. C ,  y
>.Cgr <. A ,  B >. ) ) )  ->  D  =  y )
35 simprlr 762 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( y  e.  ( EE `  N )  /\  t  e.  ( EE `  N ) ) )  /\  (
( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  /\  ( D  Btwn  <. C ,  y
>.  /\  <. C ,  y
>.Cgr <. A ,  B >. ) ) )  ->  <. A ,  B >.Cgr <. C ,  y >. )
36 opeq2 4204 . . . . . . . . 9  |-  ( D  =  y  ->  <. C ,  D >.  =  <. C , 
y >. )
3736breq2d 4451 . . . . . . . 8  |-  ( D  =  y  ->  ( <. A ,  B >.Cgr <. C ,  D >.  <->  <. A ,  B >.Cgr <. C , 
y >. ) )
3835, 37syl5ibrcom 222 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( y  e.  ( EE `  N )  /\  t  e.  ( EE `  N ) ) )  /\  (
( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  /\  ( D  Btwn  <. C ,  y
>.  /\  <. C ,  y
>.Cgr <. A ,  B >. ) ) )  -> 
( D  =  y  ->  <. A ,  B >.Cgr
<. C ,  D >. ) )
3934, 38mpd 15 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( y  e.  ( EE `  N )  /\  t  e.  ( EE `  N ) ) )  /\  (
( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  /\  ( D  Btwn  <. C ,  y
>.  /\  <. C ,  y
>.Cgr <. A ,  B >. ) ) )  ->  <. A ,  B >.Cgr <. C ,  D >. )
4026, 39syl6bi 228 . . . . 5  |-  ( t  =  y  ->  (
( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( y  e.  ( EE `  N )  /\  t  e.  ( EE `  N ) ) )  /\  (
( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  /\  ( D  Btwn  <. C ,  t
>.  /\  <. C ,  t
>.Cgr <. A ,  B >. ) ) )  ->  <. A ,  B >.Cgr <. C ,  D >. ) )
4120, 40mpcom 36 . . . 4  |-  ( ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) )  /\  ( y  e.  ( EE `  N )  /\  t  e.  ( EE `  N ) ) )  /\  (
( y  Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr <. C ,  y
>. )  /\  ( D  Btwn  <. C ,  t
>.  /\  <. C ,  t
>.Cgr <. A ,  B >. ) ) )  ->  <. A ,  B >.Cgr <. C ,  D >. )
4241exp31 602 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  ( ( y  e.  ( EE `  N )  /\  t  e.  ( EE `  N
) )  ->  (
( ( y  Btwn  <. C ,  D >.  /\ 
<. A ,  B >.Cgr <. C ,  y >. )  /\  ( D  Btwn  <. C ,  t >.  /\ 
<. C ,  t >.Cgr <. A ,  B >. ) )  ->  <. A ,  B >.Cgr <. C ,  D >. ) ) )
4342rexlimdvv 2952 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  ( E. y  e.  ( EE `  N
) E. t  e.  ( EE `  N
) ( ( y 
Btwn  <. C ,  D >.  /\  <. A ,  B >.Cgr
<. C ,  y >.
)  /\  ( D  Btwn  <. C ,  t
>.  /\  <. C ,  t
>.Cgr <. A ,  B >. ) )  ->  <. A ,  B >.Cgr <. C ,  D >. ) )
446, 43sylbid 215 1  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  ( ( <. A ,  B >.  Seg<_  <. C ,  D >.  /\ 
<. C ,  D >.  Seg<_  <. A ,  B >. )  ->  <. A ,  B >.Cgr
<. C ,  D >. ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823   E.wrex 2805   <.cop 4022   class class class wbr 4439   ` cfv 5570   NNcn 10531   EEcee 24393    Btwn cbtwn 24394  Cgrccgr 24395    Seg<_ csegle 29984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-inf2 8049  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-fal 1404  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-se 4828  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-isom 5579  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-1o 7122  df-oadd 7126  df-er 7303  df-map 7414  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-sup 7893  df-oi 7927  df-card 8311  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-2 10590  df-3 10591  df-n0 10792  df-z 10861  df-uz 11083  df-rp 11222  df-ico 11538  df-icc 11539  df-fz 11676  df-fzo 11800  df-seq 12090  df-exp 12149  df-hash 12388  df-cj 13014  df-re 13015  df-im 13016  df-sqrt 13150  df-abs 13151  df-clim 13393  df-sum 13591  df-ee 24396  df-btwn 24397  df-cgr 24398  df-ofs 29861  df-colinear 29917  df-ifs 29918  df-cgr3 29919  df-segle 29985
This theorem is referenced by:  colinbtwnle  29996
  Copyright terms: Public domain W3C validator