Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  seeq1 Structured version   Visualization version   Unicode version

Theorem seeq1 4811
 Description: Equality theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
seeq1 Se Se

Proof of Theorem seeq1
StepHypRef Expression
1 eqimss2 3471 . . 3
2 sess1 4807 . . 3 Se Se
31, 2syl 17 . 2 Se Se
4 eqimss 3470 . . 3
5 sess1 4807 . . 3 Se Se
64, 5syl 17 . 2 Se Se
73, 6impbid 195 1 Se Se
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 189   wceq 1452   wss 3390   Se wse 4796 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518 This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ral 2761  df-rab 2765  df-v 3033  df-in 3397  df-ss 3404  df-br 4396  df-se 4799 This theorem is referenced by:  oieq1  8045
 Copyright terms: Public domain W3C validator