MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sectco Structured version   Unicode version

Theorem sectco 15001
Description: Composition of two sections. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
sectco.b  |-  B  =  ( Base `  C
)
sectco.o  |-  .x.  =  (comp `  C )
sectco.s  |-  S  =  (Sect `  C )
sectco.c  |-  ( ph  ->  C  e.  Cat )
sectco.x  |-  ( ph  ->  X  e.  B )
sectco.y  |-  ( ph  ->  Y  e.  B )
sectco.z  |-  ( ph  ->  Z  e.  B )
sectco.1  |-  ( ph  ->  F ( X S Y ) G )
sectco.2  |-  ( ph  ->  H ( Y S Z ) K )
Assertion
Ref Expression
sectco  |-  ( ph  ->  ( H ( <. X ,  Y >.  .x. 
Z ) F ) ( X S Z ) ( G (
<. Z ,  Y >.  .x. 
X ) K ) )

Proof of Theorem sectco
StepHypRef Expression
1 sectco.b . . . 4  |-  B  =  ( Base `  C
)
2 eqid 2460 . . . 4  |-  ( Hom  `  C )  =  ( Hom  `  C )
3 sectco.o . . . 4  |-  .x.  =  (comp `  C )
4 sectco.c . . . 4  |-  ( ph  ->  C  e.  Cat )
5 sectco.x . . . 4  |-  ( ph  ->  X  e.  B )
6 sectco.z . . . 4  |-  ( ph  ->  Z  e.  B )
7 sectco.y . . . 4  |-  ( ph  ->  Y  e.  B )
8 sectco.1 . . . . . . 7  |-  ( ph  ->  F ( X S Y ) G )
9 eqid 2460 . . . . . . . 8  |-  ( Id
`  C )  =  ( Id `  C
)
10 sectco.s . . . . . . . 8  |-  S  =  (Sect `  C )
111, 2, 3, 9, 10, 4, 5, 7issect 14998 . . . . . . 7  |-  ( ph  ->  ( F ( X S Y ) G  <-> 
( F  e.  ( X ( Hom  `  C
) Y )  /\  G  e.  ( Y
( Hom  `  C ) X )  /\  ( G ( <. X ,  Y >.  .x.  X ) F )  =  ( ( Id `  C
) `  X )
) ) )
128, 11mpbid 210 . . . . . 6  |-  ( ph  ->  ( F  e.  ( X ( Hom  `  C
) Y )  /\  G  e.  ( Y
( Hom  `  C ) X )  /\  ( G ( <. X ,  Y >.  .x.  X ) F )  =  ( ( Id `  C
) `  X )
) )
1312simp1d 1003 . . . . 5  |-  ( ph  ->  F  e.  ( X ( Hom  `  C
) Y ) )
14 sectco.2 . . . . . . 7  |-  ( ph  ->  H ( Y S Z ) K )
151, 2, 3, 9, 10, 4, 7, 6issect 14998 . . . . . . 7  |-  ( ph  ->  ( H ( Y S Z ) K  <-> 
( H  e.  ( Y ( Hom  `  C
) Z )  /\  K  e.  ( Z
( Hom  `  C ) Y )  /\  ( K ( <. Y ,  Z >.  .x.  Y ) H )  =  ( ( Id `  C
) `  Y )
) ) )
1614, 15mpbid 210 . . . . . 6  |-  ( ph  ->  ( H  e.  ( Y ( Hom  `  C
) Z )  /\  K  e.  ( Z
( Hom  `  C ) Y )  /\  ( K ( <. Y ,  Z >.  .x.  Y ) H )  =  ( ( Id `  C
) `  Y )
) )
1716simp1d 1003 . . . . 5  |-  ( ph  ->  H  e.  ( Y ( Hom  `  C
) Z ) )
181, 2, 3, 4, 5, 7, 6, 13, 17catcocl 14929 . . . 4  |-  ( ph  ->  ( H ( <. X ,  Y >.  .x. 
Z ) F )  e.  ( X ( Hom  `  C ) Z ) )
1916simp2d 1004 . . . 4  |-  ( ph  ->  K  e.  ( Z ( Hom  `  C
) Y ) )
2012simp2d 1004 . . . 4  |-  ( ph  ->  G  e.  ( Y ( Hom  `  C
) X ) )
211, 2, 3, 4, 5, 6, 7, 18, 19, 5, 20catass 14930 . . 3  |-  ( ph  ->  ( ( G (
<. Z ,  Y >.  .x. 
X ) K ) ( <. X ,  Z >.  .x.  X ) ( H ( <. X ,  Y >.  .x.  Z ) F ) )  =  ( G ( <. X ,  Y >.  .x. 
X ) ( K ( <. X ,  Z >.  .x.  Y ) ( H ( <. X ,  Y >.  .x.  Z ) F ) ) ) )
2216simp3d 1005 . . . . . 6  |-  ( ph  ->  ( K ( <. Y ,  Z >.  .x. 
Y ) H )  =  ( ( Id
`  C ) `  Y ) )
2322oveq1d 6290 . . . . 5  |-  ( ph  ->  ( ( K (
<. Y ,  Z >.  .x. 
Y ) H ) ( <. X ,  Y >.  .x.  Y ) F )  =  ( ( ( Id `  C
) `  Y )
( <. X ,  Y >.  .x.  Y ) F ) )
241, 2, 3, 4, 5, 7, 6, 13, 17, 7, 19catass 14930 . . . . 5  |-  ( ph  ->  ( ( K (
<. Y ,  Z >.  .x. 
Y ) H ) ( <. X ,  Y >.  .x.  Y ) F )  =  ( K ( <. X ,  Z >.  .x.  Y ) ( H ( <. X ,  Y >.  .x.  Z ) F ) ) )
251, 2, 9, 4, 5, 3, 7, 13catlid 14927 . . . . 5  |-  ( ph  ->  ( ( ( Id
`  C ) `  Y ) ( <. X ,  Y >.  .x. 
Y ) F )  =  F )
2623, 24, 253eqtr3d 2509 . . . 4  |-  ( ph  ->  ( K ( <. X ,  Z >.  .x. 
Y ) ( H ( <. X ,  Y >.  .x.  Z ) F ) )  =  F )
2726oveq2d 6291 . . 3  |-  ( ph  ->  ( G ( <. X ,  Y >.  .x. 
X ) ( K ( <. X ,  Z >.  .x.  Y ) ( H ( <. X ,  Y >.  .x.  Z ) F ) ) )  =  ( G (
<. X ,  Y >.  .x. 
X ) F ) )
2812simp3d 1005 . . 3  |-  ( ph  ->  ( G ( <. X ,  Y >.  .x. 
X ) F )  =  ( ( Id
`  C ) `  X ) )
2921, 27, 283eqtrd 2505 . 2  |-  ( ph  ->  ( ( G (
<. Z ,  Y >.  .x. 
X ) K ) ( <. X ,  Z >.  .x.  X ) ( H ( <. X ,  Y >.  .x.  Z ) F ) )  =  ( ( Id `  C ) `  X
) )
301, 2, 3, 4, 6, 7, 5, 19, 20catcocl 14929 . . 3  |-  ( ph  ->  ( G ( <. Z ,  Y >.  .x. 
X ) K )  e.  ( Z ( Hom  `  C ) X ) )
311, 2, 3, 9, 10, 4, 5, 6, 18, 30issect2 14999 . 2  |-  ( ph  ->  ( ( H (
<. X ,  Y >.  .x. 
Z ) F ) ( X S Z ) ( G (
<. Z ,  Y >.  .x. 
X ) K )  <-> 
( ( G (
<. Z ,  Y >.  .x. 
X ) K ) ( <. X ,  Z >.  .x.  X ) ( H ( <. X ,  Y >.  .x.  Z ) F ) )  =  ( ( Id `  C ) `  X
) ) )
3229, 31mpbird 232 1  |-  ( ph  ->  ( H ( <. X ,  Y >.  .x. 
Z ) F ) ( X S Z ) ( G (
<. Z ,  Y >.  .x. 
X ) K ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 968    = wceq 1374    e. wcel 1762   <.cop 4026   class class class wbr 4440   ` cfv 5579  (class class class)co 6275   Basecbs 14479   Hom chom 14555  compcco 14556   Catccat 14908   Idccid 14909  Sectcsect 14989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-op 4027  df-uni 4239  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-id 4788  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-1st 6774  df-2nd 6775  df-cat 14912  df-cid 14913  df-sect 14992
This theorem is referenced by:  invco  15015
  Copyright terms: Public domain W3C validator