Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sdrgacs Structured version   Unicode version

Theorem sdrgacs 30755
Description: Closure property of division subrings. (Contributed by Mario Carneiro, 3-Oct-2015.)
Hypothesis
Ref Expression
subrgacs.b  |-  B  =  ( Base `  R
)
Assertion
Ref Expression
sdrgacs  |-  ( R  e.  DivRing  ->  (SubDRing `  R )  e.  (ACS `  B )
)

Proof of Theorem sdrgacs
Dummy variables  x  s  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2467 . . . . . . . 8  |-  ( invr `  R )  =  (
invr `  R )
2 eqid 2467 . . . . . . . 8  |-  ( 0g
`  R )  =  ( 0g `  R
)
31, 2issdrg2 30752 . . . . . . 7  |-  ( s  e.  (SubDRing `  R
)  <->  ( R  e.  DivRing 
/\  s  e.  (SubRing `  R )  /\  A. x  e.  ( s  \  { ( 0g `  R ) } ) ( ( invr `  R
) `  x )  e.  s ) )
4 3anass 977 . . . . . . 7  |-  ( ( R  e.  DivRing  /\  s  e.  (SubRing `  R )  /\  A. x  e.  ( s  \  { ( 0g `  R ) } ) ( (
invr `  R ) `  x )  e.  s )  <->  ( R  e.  DivRing 
/\  ( s  e.  (SubRing `  R )  /\  A. x  e.  ( s  \  { ( 0g `  R ) } ) ( (
invr `  R ) `  x )  e.  s ) ) )
53, 4bitri 249 . . . . . 6  |-  ( s  e.  (SubDRing `  R
)  <->  ( R  e.  DivRing 
/\  ( s  e.  (SubRing `  R )  /\  A. x  e.  ( s  \  { ( 0g `  R ) } ) ( (
invr `  R ) `  x )  e.  s ) ) )
65baib 901 . . . . 5  |-  ( R  e.  DivRing  ->  ( s  e.  (SubDRing `  R )  <->  ( s  e.  (SubRing `  R
)  /\  A. x  e.  ( s  \  {
( 0g `  R
) } ) ( ( invr `  R
) `  x )  e.  s ) ) )
7 subrgacs.b . . . . . . . . . 10  |-  B  =  ( Base `  R
)
87subrgss 17213 . . . . . . . . 9  |-  ( s  e.  (SubRing `  R
)  ->  s  C_  B )
9 selpw 4017 . . . . . . . . 9  |-  ( s  e.  ~P B  <->  s  C_  B )
108, 9sylibr 212 . . . . . . . 8  |-  ( s  e.  (SubRing `  R
)  ->  s  e.  ~P B )
1110adantl 466 . . . . . . 7  |-  ( ( R  e.  DivRing  /\  s  e.  (SubRing `  R )
)  ->  s  e.  ~P B )
12 iftrue 3945 . . . . . . . . . . . . . 14  |-  ( x  =  ( 0g `  R )  ->  if ( x  =  ( 0g `  R ) ,  x ,  ( (
invr `  R ) `  x ) )  =  x )
1312eleq1d 2536 . . . . . . . . . . . . 13  |-  ( x  =  ( 0g `  R )  ->  ( if ( x  =  ( 0g `  R ) ,  x ,  ( ( invr `  R
) `  x )
)  e.  y  <->  x  e.  y ) )
1413biimprd 223 . . . . . . . . . . . 12  |-  ( x  =  ( 0g `  R )  ->  (
x  e.  y  ->  if ( x  =  ( 0g `  R ) ,  x ,  ( ( invr `  R
) `  x )
)  e.  y ) )
15 eldifsni 4153 . . . . . . . . . . . . . 14  |-  ( x  e.  ( y  \  { ( 0g `  R ) } )  ->  x  =/=  ( 0g `  R ) )
1615necon2bi 2704 . . . . . . . . . . . . 13  |-  ( x  =  ( 0g `  R )  ->  -.  x  e.  ( y  \  { ( 0g `  R ) } ) )
1716pm2.21d 106 . . . . . . . . . . . 12  |-  ( x  =  ( 0g `  R )  ->  (
x  e.  ( y 
\  { ( 0g
`  R ) } )  ->  ( ( invr `  R ) `  x )  e.  y ) )
1814, 172thd 240 . . . . . . . . . . 11  |-  ( x  =  ( 0g `  R )  ->  (
( x  e.  y  ->  if ( x  =  ( 0g `  R ) ,  x ,  ( ( invr `  R ) `  x
) )  e.  y )  <->  ( x  e.  ( y  \  {
( 0g `  R
) } )  -> 
( ( invr `  R
) `  x )  e.  y ) ) )
19 eldifsn 4152 . . . . . . . . . . . . 13  |-  ( x  e.  ( y  \  { ( 0g `  R ) } )  <-> 
( x  e.  y  /\  x  =/=  ( 0g `  R ) ) )
2019rbaibr 903 . . . . . . . . . . . 12  |-  ( x  =/=  ( 0g `  R )  ->  (
x  e.  y  <->  x  e.  ( y  \  {
( 0g `  R
) } ) ) )
21 ifnefalse 3951 . . . . . . . . . . . . 13  |-  ( x  =/=  ( 0g `  R )  ->  if ( x  =  ( 0g `  R ) ,  x ,  ( (
invr `  R ) `  x ) )  =  ( ( invr `  R
) `  x )
)
2221eleq1d 2536 . . . . . . . . . . . 12  |-  ( x  =/=  ( 0g `  R )  ->  ( if ( x  =  ( 0g `  R ) ,  x ,  ( ( invr `  R
) `  x )
)  e.  y  <->  ( ( invr `  R ) `  x )  e.  y ) )
2320, 22imbi12d 320 . . . . . . . . . . 11  |-  ( x  =/=  ( 0g `  R )  ->  (
( x  e.  y  ->  if ( x  =  ( 0g `  R ) ,  x ,  ( ( invr `  R ) `  x
) )  e.  y )  <->  ( x  e.  ( y  \  {
( 0g `  R
) } )  -> 
( ( invr `  R
) `  x )  e.  y ) ) )
2418, 23pm2.61ine 2780 . . . . . . . . . 10  |-  ( ( x  e.  y  ->  if ( x  =  ( 0g `  R ) ,  x ,  ( ( invr `  R
) `  x )
)  e.  y )  <-> 
( x  e.  ( y  \  { ( 0g `  R ) } )  ->  (
( invr `  R ) `  x )  e.  y ) )
2524ralbii2 2893 . . . . . . . . 9  |-  ( A. x  e.  y  if ( x  =  ( 0g `  R ) ,  x ,  ( (
invr `  R ) `  x ) )  e.  y  <->  A. x  e.  ( y  \  { ( 0g `  R ) } ) ( (
invr `  R ) `  x )  e.  y )
26 difeq1 3615 . . . . . . . . . 10  |-  ( y  =  s  ->  (
y  \  { ( 0g `  R ) } )  =  ( s 
\  { ( 0g
`  R ) } ) )
27 eleq2 2540 . . . . . . . . . 10  |-  ( y  =  s  ->  (
( ( invr `  R
) `  x )  e.  y  <->  ( ( invr `  R ) `  x
)  e.  s ) )
2826, 27raleqbidv 3072 . . . . . . . . 9  |-  ( y  =  s  ->  ( A. x  e.  (
y  \  { ( 0g `  R ) } ) ( ( invr `  R ) `  x
)  e.  y  <->  A. x  e.  ( s  \  {
( 0g `  R
) } ) ( ( invr `  R
) `  x )  e.  s ) )
2925, 28syl5bb 257 . . . . . . . 8  |-  ( y  =  s  ->  ( A. x  e.  y  if ( x  =  ( 0g `  R ) ,  x ,  ( ( invr `  R
) `  x )
)  e.  y  <->  A. x  e.  ( s  \  {
( 0g `  R
) } ) ( ( invr `  R
) `  x )  e.  s ) )
3029elrab3 3262 . . . . . . 7  |-  ( s  e.  ~P B  -> 
( s  e.  {
y  e.  ~P B  |  A. x  e.  y  if ( x  =  ( 0g `  R
) ,  x ,  ( ( invr `  R
) `  x )
)  e.  y }  <->  A. x  e.  (
s  \  { ( 0g `  R ) } ) ( ( invr `  R ) `  x
)  e.  s ) )
3111, 30syl 16 . . . . . 6  |-  ( ( R  e.  DivRing  /\  s  e.  (SubRing `  R )
)  ->  ( s  e.  { y  e.  ~P B  |  A. x  e.  y  if (
x  =  ( 0g
`  R ) ,  x ,  ( (
invr `  R ) `  x ) )  e.  y }  <->  A. x  e.  ( s  \  {
( 0g `  R
) } ) ( ( invr `  R
) `  x )  e.  s ) )
3231pm5.32da 641 . . . . 5  |-  ( R  e.  DivRing  ->  ( ( s  e.  (SubRing `  R
)  /\  s  e.  { y  e.  ~P B  |  A. x  e.  y  if ( x  =  ( 0g `  R
) ,  x ,  ( ( invr `  R
) `  x )
)  e.  y } )  <->  ( s  e.  (SubRing `  R )  /\  A. x  e.  ( s  \  { ( 0g `  R ) } ) ( (
invr `  R ) `  x )  e.  s ) ) )
336, 32bitr4d 256 . . . 4  |-  ( R  e.  DivRing  ->  ( s  e.  (SubDRing `  R )  <->  ( s  e.  (SubRing `  R
)  /\  s  e.  { y  e.  ~P B  |  A. x  e.  y  if ( x  =  ( 0g `  R
) ,  x ,  ( ( invr `  R
) `  x )
)  e.  y } ) ) )
34 elin 3687 . . . 4  |-  ( s  e.  ( (SubRing `  R
)  i^i  { y  e.  ~P B  |  A. x  e.  y  if ( x  =  ( 0g `  R ) ,  x ,  ( (
invr `  R ) `  x ) )  e.  y } )  <->  ( s  e.  (SubRing `  R )  /\  s  e.  { y  e.  ~P B  |  A. x  e.  y  if ( x  =  ( 0g `  R ) ,  x ,  ( ( invr `  R
) `  x )
)  e.  y } ) )
3533, 34syl6bbr 263 . . 3  |-  ( R  e.  DivRing  ->  ( s  e.  (SubDRing `  R )  <->  s  e.  ( (SubRing `  R
)  i^i  { y  e.  ~P B  |  A. x  e.  y  if ( x  =  ( 0g `  R ) ,  x ,  ( (
invr `  R ) `  x ) )  e.  y } ) ) )
3635eqrdv 2464 . 2  |-  ( R  e.  DivRing  ->  (SubDRing `  R )  =  ( (SubRing `  R
)  i^i  { y  e.  ~P B  |  A. x  e.  y  if ( x  =  ( 0g `  R ) ,  x ,  ( (
invr `  R ) `  x ) )  e.  y } ) )
37 fvex 5874 . . . . 5  |-  ( Base `  R )  e.  _V
387, 37eqeltri 2551 . . . 4  |-  B  e. 
_V
39 mreacs 14909 . . . 4  |-  ( B  e.  _V  ->  (ACS `  B )  e.  (Moore `  ~P B ) )
4038, 39mp1i 12 . . 3  |-  ( R  e.  DivRing  ->  (ACS `  B
)  e.  (Moore `  ~P B ) )
41 drngrng 17186 . . . 4  |-  ( R  e.  DivRing  ->  R  e.  Ring )
427subrgacs 30754 . . . 4  |-  ( R  e.  Ring  ->  (SubRing `  R
)  e.  (ACS `  B ) )
4341, 42syl 16 . . 3  |-  ( R  e.  DivRing  ->  (SubRing `  R )  e.  (ACS `  B )
)
44 simplr 754 . . . . . 6  |-  ( ( ( R  e.  DivRing  /\  x  e.  B )  /\  x  =  ( 0g `  R ) )  ->  x  e.  B
)
45 df-ne 2664 . . . . . . 7  |-  ( x  =/=  ( 0g `  R )  <->  -.  x  =  ( 0g `  R ) )
467, 2, 1drnginvrcl 17196 . . . . . . . 8  |-  ( ( R  e.  DivRing  /\  x  e.  B  /\  x  =/=  ( 0g `  R
) )  ->  (
( invr `  R ) `  x )  e.  B
)
47463expa 1196 . . . . . . 7  |-  ( ( ( R  e.  DivRing  /\  x  e.  B )  /\  x  =/=  ( 0g `  R ) )  ->  ( ( invr `  R ) `  x
)  e.  B )
4845, 47sylan2br 476 . . . . . 6  |-  ( ( ( R  e.  DivRing  /\  x  e.  B )  /\  -.  x  =  ( 0g `  R ) )  ->  ( ( invr `  R ) `  x )  e.  B
)
4944, 48ifclda 3971 . . . . 5  |-  ( ( R  e.  DivRing  /\  x  e.  B )  ->  if ( x  =  ( 0g `  R ) ,  x ,  ( (
invr `  R ) `  x ) )  e.  B )
5049ralrimiva 2878 . . . 4  |-  ( R  e.  DivRing  ->  A. x  e.  B  if ( x  =  ( 0g `  R ) ,  x ,  ( ( invr `  R
) `  x )
)  e.  B )
51 acsfn1 14912 . . . 4  |-  ( ( B  e.  _V  /\  A. x  e.  B  if ( x  =  ( 0g `  R ) ,  x ,  ( (
invr `  R ) `  x ) )  e.  B )  ->  { y  e.  ~P B  |  A. x  e.  y  if ( x  =  ( 0g `  R ) ,  x ,  ( ( invr `  R
) `  x )
)  e.  y }  e.  (ACS `  B
) )
5238, 50, 51sylancr 663 . . 3  |-  ( R  e.  DivRing  ->  { y  e. 
~P B  |  A. x  e.  y  if ( x  =  ( 0g `  R ) ,  x ,  ( (
invr `  R ) `  x ) )  e.  y }  e.  (ACS
`  B ) )
53 mreincl 14850 . . 3  |-  ( ( (ACS `  B )  e.  (Moore `  ~P B )  /\  (SubRing `  R
)  e.  (ACS `  B )  /\  {
y  e.  ~P B  |  A. x  e.  y  if ( x  =  ( 0g `  R
) ,  x ,  ( ( invr `  R
) `  x )
)  e.  y }  e.  (ACS `  B
) )  ->  (
(SubRing `  R )  i^i 
{ y  e.  ~P B  |  A. x  e.  y  if (
x  =  ( 0g
`  R ) ,  x ,  ( (
invr `  R ) `  x ) )  e.  y } )  e.  (ACS `  B )
)
5440, 43, 52, 53syl3anc 1228 . 2  |-  ( R  e.  DivRing  ->  ( (SubRing `  R
)  i^i  { y  e.  ~P B  |  A. x  e.  y  if ( x  =  ( 0g `  R ) ,  x ,  ( (
invr `  R ) `  x ) )  e.  y } )  e.  (ACS `  B )
)
5536, 54eqeltrd 2555 1  |-  ( R  e.  DivRing  ->  (SubDRing `  R )  e.  (ACS `  B )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2814   {crab 2818   _Vcvv 3113    \ cdif 3473    i^i cin 3475    C_ wss 3476   ifcif 3939   ~Pcpw 4010   {csn 4027   ` cfv 5586   Basecbs 14486   0gc0g 14691  Moorecmre 14833  ACScacs 14836   Ringcrg 16986   invrcinvr 17104   DivRingcdr 17179  SubRingcsubrg 17208  SubDRingcsdrg 30749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-tpos 6952  df-recs 7039  df-rdg 7073  df-1o 7127  df-oadd 7131  df-er 7308  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-nn 10533  df-2 10590  df-3 10591  df-ndx 14489  df-slot 14490  df-base 14491  df-sets 14492  df-ress 14493  df-plusg 14564  df-mulr 14565  df-0g 14693  df-mre 14837  df-mrc 14838  df-acs 14840  df-mnd 15728  df-submnd 15778  df-grp 15858  df-minusg 15859  df-subg 15993  df-mgp 16932  df-ur 16944  df-rng 16988  df-oppr 17056  df-dvdsr 17074  df-unit 17075  df-invr 17105  df-drng 17181  df-subrg 17210  df-sdrg 30750
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator