MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sdomtr Structured version   Unicode version

Theorem sdomtr 7648
Description: Strict dominance is transitive. Theorem 21(iii) of [Suppes] p. 97. (Contributed by NM, 9-Jun-1998.)
Assertion
Ref Expression
sdomtr  |-  ( ( A  ~<  B  /\  B  ~<  C )  ->  A  ~<  C )

Proof of Theorem sdomtr
StepHypRef Expression
1 sdomdom 7536 . 2  |-  ( A 
~<  B  ->  A  ~<_  B )
2 domsdomtr 7645 . 2  |-  ( ( A  ~<_  B  /\  B  ~<  C )  ->  A  ~<  C )
31, 2sylan 469 1  |-  ( ( A  ~<  B  /\  B  ~<  C )  ->  A  ~<  C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367   class class class wbr 4439    ~<_ cdom 7507    ~< csdm 7508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-br 4440  df-opab 4498  df-id 4784  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-er 7303  df-en 7510  df-dom 7511  df-sdom 7512
This theorem is referenced by:  sdomn2lp  7649  2pwuninel  7665  2pwne  7666  r1sdom  8183  alephordi  8446  pwsdompw  8575  gruina  9185  rexpen  14045
  Copyright terms: Public domain W3C validator