MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sdomen2 Structured version   Unicode version

Theorem sdomen2 7652
Description: Equality-like theorem for equinumerosity and strict dominance. (Contributed by NM, 8-Nov-2003.)
Assertion
Ref Expression
sdomen2  |-  ( A 
~~  B  ->  ( C  ~<  A  <->  C  ~<  B ) )

Proof of Theorem sdomen2
StepHypRef Expression
1 sdomentr 7641 . . 3  |-  ( ( C  ~<  A  /\  A  ~~  B )  ->  C  ~<  B )
21ancoms 453 . 2  |-  ( ( A  ~~  B  /\  C  ~<  A )  ->  C  ~<  B )
3 ensym 7554 . . 3  |-  ( A 
~~  B  ->  B  ~~  A )
4 sdomentr 7641 . . . 4  |-  ( ( C  ~<  B  /\  B  ~~  A )  ->  C  ~<  A )
54ancoms 453 . . 3  |-  ( ( B  ~~  A  /\  C  ~<  B )  ->  C  ~<  A )
63, 5sylan 471 . 2  |-  ( ( A  ~~  B  /\  C  ~<  B )  ->  C  ~<  A )
72, 6impbida 829 1  |-  ( A 
~~  B  ->  ( C  ~<  A  <->  C  ~<  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184   class class class wbr 4440    ~~ cen 7503    ~< csdm 7505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3108  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-op 4027  df-uni 4239  df-br 4441  df-opab 4499  df-id 4788  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-er 7301  df-en 7507  df-dom 7508  df-sdom 7509
This theorem is referenced by:  fisucdomOLD  7713  cdaxpdom  8558  alephval2  8936  engch  8995  canthp1lem2  9020  hargch  9040  alephgch  9041  ovoliunnfl  29620
  Copyright terms: Public domain W3C validator