Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sdclem2 Unicode version

Theorem sdclem2 26336
Description: Lemma for sdc 26338. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
sdc.1  |-  Z  =  ( ZZ>= `  M )
sdc.2  |-  ( g  =  ( f  |`  ( M ... n ) )  ->  ( ps  <->  ch ) )
sdc.3  |-  ( n  =  M  ->  ( ps 
<->  ta ) )
sdc.4  |-  ( n  =  k  ->  ( ps 
<->  th ) )
sdc.5  |-  ( ( g  =  h  /\  n  =  ( k  +  1 ) )  ->  ( ps  <->  si )
)
sdc.6  |-  ( ph  ->  A  e.  V )
sdc.7  |-  ( ph  ->  M  e.  ZZ )
sdc.8  |-  ( ph  ->  E. g ( g : { M } --> A  /\  ta ) )
sdc.9  |-  ( (
ph  /\  k  e.  Z )  ->  (
( g : ( M ... k ) --> A  /\  th )  ->  E. h ( h : ( M ... ( k  +  1 ) ) --> A  /\  g  =  ( h  |`  ( M ... k
) )  /\  si ) ) )
sdc.10  |-  J  =  { g  |  E. n  e.  Z  (
g : ( M ... n ) --> A  /\  ps ) }
sdc.11  |-  F  =  ( w  e.  Z ,  x  e.  J  |->  { h  |  E. k  e.  Z  (
h : ( M ... ( k  +  1 ) ) --> A  /\  x  =  ( h  |`  ( M ... k ) )  /\  si ) } )
sdc.12  |-  F/ k
ph
sdc.13  |-  ( ph  ->  G : Z --> J )
sdc.14  |-  ( ph  ->  ( G `  M
) : ( M ... M ) --> A )
sdc.15  |-  ( (
ph  /\  w  e.  Z )  ->  ( G `  ( w  +  1 ) )  e.  ( w F ( G `  w
) ) )
Assertion
Ref Expression
sdclem2  |-  ( ph  ->  E. f ( f : Z --> A  /\  A. n  e.  Z  ch ) )
Distinct variable groups:    f, g, h, k, n, w, x, A    h, J, k, w, x    f, M, g, h, k, n, w, x    ch, g    n, F, w, x    ps, f, h, k, x    si, f,
g, n, x    f, G, g, h, k, n, w, x    ph, n, w, x    th, n, w, x    h, V    ta, h, k, n, w, x   
f, Z, g, h, k, n, w, x
Allowed substitution hints:    ph( f, g, h, k)    ps( w, g, n)    ch( x, w, f, h, k, n)    th( f, g, h, k)    ta( f, g)    si( w, h, k)    F( f, g, h, k)    J( f, g, n)    V( x, w, f, g, k, n)

Proof of Theorem sdclem2
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 sdc.12 . . . 4  |-  F/ k
ph
2 sdc.13 . . . . . . . . . 10  |-  ( ph  ->  G : Z --> J )
32ffvelrnda 5829 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  J )
4 sdc.10 . . . . . . . . . . 11  |-  J  =  { g  |  E. n  e.  Z  (
g : ( M ... n ) --> A  /\  ps ) }
54eleq2i 2468 . . . . . . . . . 10  |-  ( ( G `  k )  e.  J  <->  ( G `  k )  e.  {
g  |  E. n  e.  Z  ( g : ( M ... n ) --> A  /\  ps ) } )
6 nfcv 2540 . . . . . . . . . . . 12  |-  F/_ g Z
7 nfv 1626 . . . . . . . . . . . . 13  |-  F/ g ( G `  k
) : ( M ... n ) --> A
8 nfsbc1v 3140 . . . . . . . . . . . . 13  |-  F/ g
[. ( G `  k )  /  g ]. ps
97, 8nfan 1842 . . . . . . . . . . . 12  |-  F/ g ( ( G `  k ) : ( M ... n ) --> A  /\  [. ( G `  k )  /  g ]. ps )
106, 9nfrex 2721 . . . . . . . . . . 11  |-  F/ g E. n  e.  Z  ( ( G `  k ) : ( M ... n ) --> A  /\  [. ( G `  k )  /  g ]. ps )
11 fvex 5701 . . . . . . . . . . 11  |-  ( G `
 k )  e. 
_V
12 feq1 5535 . . . . . . . . . . . . 13  |-  ( g  =  ( G `  k )  ->  (
g : ( M ... n ) --> A  <-> 
( G `  k
) : ( M ... n ) --> A ) )
13 sbceq1a 3131 . . . . . . . . . . . . 13  |-  ( g  =  ( G `  k )  ->  ( ps 
<-> 
[. ( G `  k )  /  g ]. ps ) )
1412, 13anbi12d 692 . . . . . . . . . . . 12  |-  ( g  =  ( G `  k )  ->  (
( g : ( M ... n ) --> A  /\  ps )  <->  ( ( G `  k
) : ( M ... n ) --> A  /\  [. ( G `
 k )  / 
g ]. ps ) ) )
1514rexbidv 2687 . . . . . . . . . . 11  |-  ( g  =  ( G `  k )  ->  ( E. n  e.  Z  ( g : ( M ... n ) --> A  /\  ps )  <->  E. n  e.  Z  ( ( G `  k
) : ( M ... n ) --> A  /\  [. ( G `
 k )  / 
g ]. ps ) ) )
1610, 11, 15elabf 3041 . . . . . . . . . 10  |-  ( ( G `  k )  e.  { g  |  E. n  e.  Z  ( g : ( M ... n ) --> A  /\  ps ) } 
<->  E. n  e.  Z  ( ( G `  k ) : ( M ... n ) --> A  /\  [. ( G `  k )  /  g ]. ps ) )
175, 16bitri 241 . . . . . . . . 9  |-  ( ( G `  k )  e.  J  <->  E. n  e.  Z  ( ( G `  k ) : ( M ... n ) --> A  /\  [. ( G `  k
)  /  g ]. ps ) )
183, 17sylib 189 . . . . . . . 8  |-  ( (
ph  /\  k  e.  Z )  ->  E. n  e.  Z  ( ( G `  k ) : ( M ... n ) --> A  /\  [. ( G `  k
)  /  g ]. ps ) )
19 fdm 5554 . . . . . . . . . . . 12  |-  ( ( G `  k ) : ( M ... n ) --> A  ->  dom  ( G `  k
)  =  ( M ... n ) )
2019adantr 452 . . . . . . . . . . 11  |-  ( ( ( G `  k
) : ( M ... n ) --> A  /\  [. ( G `
 k )  / 
g ]. ps )  ->  dom  ( G `  k
)  =  ( M ... n ) )
21 fveq2 5687 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  M  ->  ( G `  x )  =  ( G `  M ) )
22 oveq2 6048 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  =  M  ->  ( M ... x )  =  ( M ... M
) )
2322mpteq1d 4250 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  M  ->  (
m  e.  ( M ... x )  |->  ( ( G `  m
) `  m )
)  =  ( m  e.  ( M ... M )  |->  ( ( G `  m ) `
 m ) ) )
2421, 23eqeq12d 2418 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  M  ->  (
( G `  x
)  =  ( m  e.  ( M ... x )  |->  ( ( G `  m ) `
 m ) )  <-> 
( G `  M
)  =  ( m  e.  ( M ... M )  |->  ( ( G `  m ) `
 m ) ) ) )
2524imbi2d 308 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  M  ->  (
( ph  ->  ( G `
 x )  =  ( m  e.  ( M ... x ) 
|->  ( ( G `  m ) `  m
) ) )  <->  ( ph  ->  ( G `  M
)  =  ( m  e.  ( M ... M )  |->  ( ( G `  m ) `
 m ) ) ) ) )
26 fveq2 5687 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  w  ->  ( G `  x )  =  ( G `  w ) )
27 oveq2 6048 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  =  w  ->  ( M ... x )  =  ( M ... w
) )
2827mpteq1d 4250 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  w  ->  (
m  e.  ( M ... x )  |->  ( ( G `  m
) `  m )
)  =  ( m  e.  ( M ... w )  |->  ( ( G `  m ) `
 m ) ) )
2926, 28eqeq12d 2418 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  w  ->  (
( G `  x
)  =  ( m  e.  ( M ... x )  |->  ( ( G `  m ) `
 m ) )  <-> 
( G `  w
)  =  ( m  e.  ( M ... w )  |->  ( ( G `  m ) `
 m ) ) ) )
3029imbi2d 308 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  w  ->  (
( ph  ->  ( G `
 x )  =  ( m  e.  ( M ... x ) 
|->  ( ( G `  m ) `  m
) ) )  <->  ( ph  ->  ( G `  w
)  =  ( m  e.  ( M ... w )  |->  ( ( G `  m ) `
 m ) ) ) ) )
31 fveq2 5687 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  ( w  + 
1 )  ->  ( G `  x )  =  ( G `  ( w  +  1
) ) )
32 oveq2 6048 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  =  ( w  + 
1 )  ->  ( M ... x )  =  ( M ... (
w  +  1 ) ) )
3332mpteq1d 4250 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  ( w  + 
1 )  ->  (
m  e.  ( M ... x )  |->  ( ( G `  m
) `  m )
)  =  ( m  e.  ( M ... ( w  +  1
) )  |->  ( ( G `  m ) `
 m ) ) )
3431, 33eqeq12d 2418 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  ( w  + 
1 )  ->  (
( G `  x
)  =  ( m  e.  ( M ... x )  |->  ( ( G `  m ) `
 m ) )  <-> 
( G `  (
w  +  1 ) )  =  ( m  e.  ( M ... ( w  +  1
) )  |->  ( ( G `  m ) `
 m ) ) ) )
3534imbi2d 308 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  ( w  + 
1 )  ->  (
( ph  ->  ( G `
 x )  =  ( m  e.  ( M ... x ) 
|->  ( ( G `  m ) `  m
) ) )  <->  ( ph  ->  ( G `  (
w  +  1 ) )  =  ( m  e.  ( M ... ( w  +  1
) )  |->  ( ( G `  m ) `
 m ) ) ) ) )
36 fveq2 5687 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  k  ->  ( G `  x )  =  ( G `  k ) )
37 oveq2 6048 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  =  k  ->  ( M ... x )  =  ( M ... k
) )
3837mpteq1d 4250 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  k  ->  (
m  e.  ( M ... x )  |->  ( ( G `  m
) `  m )
)  =  ( m  e.  ( M ... k )  |->  ( ( G `  m ) `
 m ) ) )
3936, 38eqeq12d 2418 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  k  ->  (
( G `  x
)  =  ( m  e.  ( M ... x )  |->  ( ( G `  m ) `
 m ) )  <-> 
( G `  k
)  =  ( m  e.  ( M ... k )  |->  ( ( G `  m ) `
 m ) ) ) )
4039imbi2d 308 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  k  ->  (
( ph  ->  ( G `
 x )  =  ( m  e.  ( M ... x ) 
|->  ( ( G `  m ) `  m
) ) )  <->  ( ph  ->  ( G `  k
)  =  ( m  e.  ( M ... k )  |->  ( ( G `  m ) `
 m ) ) ) ) )
41 fveq2 5687 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( m  =  k  ->  ( G `  m )  =  ( G `  k ) )
42 id 20 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( m  =  k  ->  m  =  k )
4341, 42fveq12d 5693 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( m  =  k  ->  (
( G `  m
) `  m )  =  ( ( G `
 k ) `  k ) )
44 eqid 2404 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( m  e.  ( M ... M )  |->  ( ( G `  m ) `
 m ) )  =  ( m  e.  ( M ... M
)  |->  ( ( G `
 m ) `  m ) )
45 fvex 5701 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( G `  k ) `
 k )  e. 
_V
4643, 44, 45fvmpt 5765 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( k  e.  ( M ... M )  ->  (
( m  e.  ( M ... M ) 
|->  ( ( G `  m ) `  m
) ) `  k
)  =  ( ( G `  k ) `
 k ) )
4746adantl 453 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  k  e.  ( M ... M ) )  ->  ( (
m  e.  ( M ... M )  |->  ( ( G `  m
) `  m )
) `  k )  =  ( ( G `
 k ) `  k ) )
48 elfz1eq 11024 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( k  e.  ( M ... M )  ->  k  =  M )
4948adantl 453 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
ph  /\  k  e.  ( M ... M ) )  ->  k  =  M )
5049fveq2d 5691 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  k  e.  ( M ... M ) )  ->  ( G `  k )  =  ( G `  M ) )
5150fveq1d 5689 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  k  e.  ( M ... M ) )  ->  ( ( G `  k ) `  k )  =  ( ( G `  M
) `  k )
)
5247, 51eqtr2d 2437 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  k  e.  ( M ... M ) )  ->  ( ( G `  M ) `  k )  =  ( ( m  e.  ( M ... M ) 
|->  ( ( G `  m ) `  m
) ) `  k
) )
5352ex 424 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( k  e.  ( M ... M )  ->  ( ( G `
 M ) `  k )  =  ( ( m  e.  ( M ... M ) 
|->  ( ( G `  m ) `  m
) ) `  k
) ) )
541, 53ralrimi 2747 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  A. k  e.  ( M ... M ) ( ( G `  M ) `  k
)  =  ( ( m  e.  ( M ... M )  |->  ( ( G `  m
) `  m )
) `  k )
)
55 sdc.14 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( G `  M
) : ( M ... M ) --> A )
56 ffn 5550 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( G `  M ) : ( M ... M ) --> A  -> 
( G `  M
)  Fn  ( M ... M ) )
5755, 56syl 16 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( G `  M
)  Fn  ( M ... M ) )
58 fvex 5701 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( G `  m ) `
 m )  e. 
_V
5958, 44fnmpti 5532 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( m  e.  ( M ... M )  |->  ( ( G `  m ) `
 m ) )  Fn  ( M ... M )
60 eqfnfv 5786 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( G `  M
)  Fn  ( M ... M )  /\  ( m  e.  ( M ... M )  |->  ( ( G `  m
) `  m )
)  Fn  ( M ... M ) )  ->  ( ( G `
 M )  =  ( m  e.  ( M ... M ) 
|->  ( ( G `  m ) `  m
) )  <->  A. k  e.  ( M ... M
) ( ( G `
 M ) `  k )  =  ( ( m  e.  ( M ... M ) 
|->  ( ( G `  m ) `  m
) ) `  k
) ) )
6157, 59, 60sylancl 644 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( ( G `  M )  =  ( m  e.  ( M ... M )  |->  ( ( G `  m
) `  m )
)  <->  A. k  e.  ( M ... M ) ( ( G `  M ) `  k
)  =  ( ( m  e.  ( M ... M )  |->  ( ( G `  m
) `  m )
) `  k )
) )
6254, 61mpbird 224 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( G `  M
)  =  ( m  e.  ( M ... M )  |->  ( ( G `  m ) `
 m ) ) )
6362a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( M  e.  ZZ  ->  ( ph  ->  ( G `  M )  =  ( m  e.  ( M ... M )  |->  ( ( G `  m
) `  m )
) ) )
64 sdc.1 . . . . . . . . . . . . . . . . . . . . . 22  |-  Z  =  ( ZZ>= `  M )
6564eleq2i 2468 . . . . . . . . . . . . . . . . . . . . 21  |-  ( w  e.  Z  <->  w  e.  ( ZZ>= `  M )
)
662ffvelrnda 5829 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( (
ph  /\  w  e.  Z )  ->  ( G `  w )  e.  J )
67 simpr 448 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( (
ph  /\  w  e.  Z )  ->  w  e.  Z )
68 3simpa 954 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( h : ( M ... ( k  +  1 ) ) --> A  /\  ( G `  w )  =  ( h  |`  ( M ... k ) )  /\  si )  ->  ( h : ( M ... ( k  +  1 ) ) --> A  /\  ( G `  w )  =  ( h  |`  ( M ... k ) ) ) )
6968reximi 2773 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  ( G `  w )  =  ( h  |`  ( M ... k ) )  /\  si )  ->  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  ( G `  w )  =  ( h  |`  ( M ... k ) ) ) )
7069ss2abi 3375 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  { h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  ( G `
 w )  =  ( h  |`  ( M ... k ) )  /\  si ) } 
C_  { h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  ( G `
 w )  =  ( h  |`  ( M ... k ) ) ) }
71 fvex 5701 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ZZ>= `  M )  e.  _V
7264, 71eqeltri 2474 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  Z  e. 
_V
73 nfv 1626 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  F/ k  w  e.  Z
741, 73nfan 1842 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  F/ k ( ph  /\  w  e.  Z )
75 sdc.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ph  ->  A  e.  V )
7675adantr 452 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( (
ph  /\  w  e.  Z )  ->  A  e.  V )
77 simpl 444 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( ( h : ( M ... ( k  +  1 ) ) --> A  /\  ( G `  w )  =  ( h  |`  ( M ... k ) ) )  ->  h : ( M ... ( k  +  1 ) ) --> A )
78 ovex 6065 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( M ... ( k  +  1 ) )  e. 
_V
79 elmapg 6990 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( ( A  e.  V  /\  ( M ... ( k  +  1 ) )  e.  _V )  -> 
( h  e.  ( A  ^m  ( M ... ( k  +  1 ) ) )  <-> 
h : ( M ... ( k  +  1 ) ) --> A ) )
8078, 79mpan2 653 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( A  e.  V  ->  (
h  e.  ( A  ^m  ( M ... ( k  +  1 ) ) )  <->  h :
( M ... (
k  +  1 ) ) --> A ) )
8177, 80syl5ibr 213 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( A  e.  V  ->  (
( h : ( M ... ( k  +  1 ) ) --> A  /\  ( G `
 w )  =  ( h  |`  ( M ... k ) ) )  ->  h  e.  ( A  ^m  ( M ... ( k  +  1 ) ) ) ) )
8281abssdv 3377 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( A  e.  V  ->  { h  |  ( h : ( M ... (
k  +  1 ) ) --> A  /\  ( G `  w )  =  ( h  |`  ( M ... k ) ) ) }  C_  ( A  ^m  ( M ... ( k  +  1 ) ) ) )
8376, 82syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( (
ph  /\  w  e.  Z )  ->  { h  |  ( h : ( M ... (
k  +  1 ) ) --> A  /\  ( G `  w )  =  ( h  |`  ( M ... k ) ) ) }  C_  ( A  ^m  ( M ... ( k  +  1 ) ) ) )
84 ovex 6065 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( A  ^m  ( M ... ( k  +  1 ) ) )  e. 
_V
85 ssexg 4309 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( { h  |  ( h : ( M ... ( k  +  1 ) ) --> A  /\  ( G `  w )  =  ( h  |`  ( M ... k ) ) ) }  C_  ( A  ^m  ( M ... (
k  +  1 ) ) )  /\  ( A  ^m  ( M ... ( k  +  1 ) ) )  e. 
_V )  ->  { h  |  ( h : ( M ... (
k  +  1 ) ) --> A  /\  ( G `  w )  =  ( h  |`  ( M ... k ) ) ) }  e.  _V )
8683, 84, 85sylancl 644 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( (
ph  /\  w  e.  Z )  ->  { h  |  ( h : ( M ... (
k  +  1 ) ) --> A  /\  ( G `  w )  =  ( h  |`  ( M ... k ) ) ) }  e.  _V )
8786a1d 23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( (
ph  /\  w  e.  Z )  ->  (
k  e.  Z  ->  { h  |  (
h : ( M ... ( k  +  1 ) ) --> A  /\  ( G `  w )  =  ( h  |`  ( M ... k ) ) ) }  e.  _V )
)
8874, 87ralrimi 2747 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( (
ph  /\  w  e.  Z )  ->  A. k  e.  Z  { h  |  ( h : ( M ... (
k  +  1 ) ) --> A  /\  ( G `  w )  =  ( h  |`  ( M ... k ) ) ) }  e.  _V )
89 abrexex2g 5947 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( Z  e.  _V  /\  A. k  e.  Z  {
h  |  ( h : ( M ... ( k  +  1 ) ) --> A  /\  ( G `  w )  =  ( h  |`  ( M ... k ) ) ) }  e.  _V )  ->  { h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  ( G `
 w )  =  ( h  |`  ( M ... k ) ) ) }  e.  _V )
9072, 88, 89sylancr 645 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( (
ph  /\  w  e.  Z )  ->  { h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  ( G `
 w )  =  ( h  |`  ( M ... k ) ) ) }  e.  _V )
91 ssexg 4309 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( { h  |  E. k  e.  Z  (
h : ( M ... ( k  +  1 ) ) --> A  /\  ( G `  w )  =  ( h  |`  ( M ... k ) )  /\  si ) }  C_  { h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  ( G `
 w )  =  ( h  |`  ( M ... k ) ) ) }  /\  {
h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  ( G `  w )  =  ( h  |`  ( M ... k ) ) ) }  e.  _V )  ->  { h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  ( G `
 w )  =  ( h  |`  ( M ... k ) )  /\  si ) }  e.  _V )
9270, 90, 91sylancr 645 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( (
ph  /\  w  e.  Z )  ->  { h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  ( G `
 w )  =  ( h  |`  ( M ... k ) )  /\  si ) }  e.  _V )
93 eqeq1 2410 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( x  =  ( G `  w )  ->  (
x  =  ( h  |`  ( M ... k
) )  <->  ( G `  w )  =  ( h  |`  ( M ... k ) ) ) )
94933anbi2d 1259 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( x  =  ( G `  w )  ->  (
( h : ( M ... ( k  +  1 ) ) --> A  /\  x  =  ( h  |`  ( M ... k ) )  /\  si )  <->  ( h : ( M ... ( k  +  1 ) ) --> A  /\  ( G `  w )  =  ( h  |`  ( M ... k ) )  /\  si )
) )
9594rexbidv 2687 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( x  =  ( G `  w )  ->  ( E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  x  =  ( h  |`  ( M ... k ) )  /\  si )  <->  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  ( G `  w )  =  ( h  |`  ( M ... k ) )  /\  si )
) )
9695abbidv 2518 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( x  =  ( G `  w )  ->  { h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  x  =  ( h  |`  ( M ... k ) )  /\  si ) }  =  { h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  ( G `
 w )  =  ( h  |`  ( M ... k ) )  /\  si ) } )
9796eleq1d 2470 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( x  =  ( G `  w )  ->  ( { h  |  E. k  e.  Z  (
h : ( M ... ( k  +  1 ) ) --> A  /\  x  =  ( h  |`  ( M ... k ) )  /\  si ) }  e.  _V  <->  { h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  ( G `  w )  =  ( h  |`  ( M ... k ) )  /\  si ) }  e.  _V )
)
98 oveq2 6048 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( x  =  ( G `  w )  ->  (
w F x )  =  ( w F ( G `  w
) ) )
9998, 96eqeq12d 2418 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( x  =  ( G `  w )  ->  (
( w F x )  =  { h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  x  =  ( h  |`  ( M ... k ) )  /\  si ) }  <-> 
( w F ( G `  w ) )  =  { h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  ( G `
 w )  =  ( h  |`  ( M ... k ) )  /\  si ) } ) )
10097, 99imbi12d 312 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( x  =  ( G `  w )  ->  (
( { h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  x  =  ( h  |`  ( M ... k ) )  /\  si ) }  e.  _V  ->  (
w F x )  =  { h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  x  =  ( h  |`  ( M ... k ) )  /\  si ) } )  <->  ( { h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  ( G `
 w )  =  ( h  |`  ( M ... k ) )  /\  si ) }  e.  _V  ->  (
w F ( G `
 w ) )  =  { h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  ( G `
 w )  =  ( h  |`  ( M ... k ) )  /\  si ) } ) ) )
101100imbi2d 308 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( x  =  ( G `  w )  ->  (
( w  e.  Z  ->  ( { h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  x  =  ( h  |`  ( M ... k ) )  /\  si ) }  e.  _V  ->  (
w F x )  =  { h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  x  =  ( h  |`  ( M ... k ) )  /\  si ) } ) )  <->  ( w  e.  Z  ->  ( { h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  ( G `  w )  =  ( h  |`  ( M ... k ) )  /\  si ) }  e.  _V  ->  ( w F ( G `
 w ) )  =  { h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  ( G `
 w )  =  ( h  |`  ( M ... k ) )  /\  si ) } ) ) ) )
102 sdc.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  F  =  ( w  e.  Z ,  x  e.  J  |->  { h  |  E. k  e.  Z  (
h : ( M ... ( k  +  1 ) ) --> A  /\  x  =  ( h  |`  ( M ... k ) )  /\  si ) } )
103102ovmpt4g 6155 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( w  e.  Z  /\  x  e.  J  /\  { h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  x  =  ( h  |`  ( M ... k
) )  /\  si ) }  e.  _V )  ->  ( w F x )  =  {
h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  x  =  ( h  |`  ( M ... k
) )  /\  si ) } )
1041033com12 1157 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( x  e.  J  /\  w  e.  Z  /\  { h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  x  =  ( h  |`  ( M ... k
) )  /\  si ) }  e.  _V )  ->  ( w F x )  =  {
h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  x  =  ( h  |`  ( M ... k
) )  /\  si ) } )
1051043exp 1152 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( x  e.  J  ->  (
w  e.  Z  -> 
( { h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  x  =  ( h  |`  ( M ... k ) )  /\  si ) }  e.  _V  ->  (
w F x )  =  { h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  x  =  ( h  |`  ( M ... k ) )  /\  si ) } ) ) )
106101, 105vtoclga 2977 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( G `  w )  e.  J  ->  (
w  e.  Z  -> 
( { h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  ( G `
 w )  =  ( h  |`  ( M ... k ) )  /\  si ) }  e.  _V  ->  (
w F ( G `
 w ) )  =  { h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  ( G `
 w )  =  ( h  |`  ( M ... k ) )  /\  si ) } ) ) )
10766, 67, 92, 106syl3c 59 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
ph  /\  w  e.  Z )  ->  (
w F ( G `
 w ) )  =  { h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  ( G `
 w )  =  ( h  |`  ( M ... k ) )  /\  si ) } )
108107, 70syl6eqss 3358 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  w  e.  Z )  ->  (
w F ( G `
 w ) ) 
C_  { h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  ( G `
 w )  =  ( h  |`  ( M ... k ) ) ) } )
109 sdc.15 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  w  e.  Z )  ->  ( G `  ( w  +  1 ) )  e.  ( w F ( G `  w
) ) )
110108, 109sseldd 3309 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  w  e.  Z )  ->  ( G `  ( w  +  1 ) )  e.  { h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  ( G `
 w )  =  ( h  |`  ( M ... k ) ) ) } )
111 fvex 5701 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( G `
 ( w  + 
1 ) )  e. 
_V
112 feq1 5535 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( h  =  ( G `  ( w  +  1
) )  ->  (
h : ( M ... ( k  +  1 ) ) --> A  <-> 
( G `  (
w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A ) )
113 reseq1 5099 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( h  =  ( G `  ( w  +  1
) )  ->  (
h  |`  ( M ... k ) )  =  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) ) )
114113eqeq2d 2415 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( h  =  ( G `  ( w  +  1
) )  ->  (
( G `  w
)  =  ( h  |`  ( M ... k
) )  <->  ( G `  w )  =  ( ( G `  (
w  +  1 ) )  |`  ( M ... k ) ) ) )
115112, 114anbi12d 692 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( h  =  ( G `  ( w  +  1
) )  ->  (
( h : ( M ... ( k  +  1 ) ) --> A  /\  ( G `
 w )  =  ( h  |`  ( M ... k ) ) )  <->  ( ( G `
 ( w  + 
1 ) ) : ( M ... (
k  +  1 ) ) --> A  /\  ( G `  w )  =  ( ( G `
 ( w  + 
1 ) )  |`  ( M ... k ) ) ) ) )
116115rexbidv 2687 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( h  =  ( G `  ( w  +  1
) )  ->  ( E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  ( G `
 w )  =  ( h  |`  ( M ... k ) ) )  <->  E. k  e.  Z  ( ( G `  ( w  +  1
) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( G `
 w )  =  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) ) ) ) )
117111, 116elab 3042 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( G `  ( w  +  1 ) )  e.  { h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  ( G `
 w )  =  ( h  |`  ( M ... k ) ) ) }  <->  E. k  e.  Z  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( G `  w )  =  ( ( G `
 ( w  + 
1 ) )  |`  ( M ... k ) ) ) )
118110, 117sylib 189 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  w  e.  Z )  ->  E. k  e.  Z  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( G `  w )  =  ( ( G `
 ( w  + 
1 ) )  |`  ( M ... k ) ) ) )
119 nfv 1626 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  F/ k ( ( G `  w )  =  ( m  e.  ( M ... w )  |->  ( ( G `  m
) `  m )
)  ->  ( G `  ( w  +  1 ) )  =  ( m  e.  ( M ... ( w  + 
1 ) )  |->  ( ( G `  m
) `  m )
) )
120 simprl 733 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z
)  /\  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) ) ) )  ->  ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A )
121 fzssp1 11051 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( M ... k )  C_  ( M ... ( k  +  1 ) )
122 fssres 5569 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( ( ( G `  (
w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( M ... k )  C_  ( M ... ( k  +  1 ) ) )  ->  ( ( G `
 ( w  + 
1 ) )  |`  ( M ... k ) ) : ( M ... k ) --> A )
123120, 121, 122sylancl 644 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z
)  /\  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) ) ) )  ->  ( ( G `  ( w  +  1 ) )  |`  ( M ... k
) ) : ( M ... k ) --> A )
124 fdm 5554 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( ( ( G `  (
w  +  1 ) )  |`  ( M ... k ) ) : ( M ... k
) --> A  ->  dom  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) )  =  ( M ... k ) )
125123, 124syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z
)  /\  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) ) ) )  ->  dom  ( ( G `  ( w  +  1 ) )  |`  ( M ... k
) )  =  ( M ... k ) )
126 eqid 2404 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( m  e.  ( M ... w )  |->  ( ( G `  m ) `
 m ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) )
12758, 126fnmpti 5532 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( m  e.  ( M ... w )  |->  ( ( G `  m ) `
 m ) )  Fn  ( M ... w )
128 simprr 734 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z
)  /\  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) ) ) )  ->  ( ( G `  ( w  +  1 ) )  |`  ( M ... k
) )  =  ( m  e.  ( M ... w )  |->  ( ( G `  m
) `  m )
) )
129128fneq1d 5495 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z
)  /\  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) ) ) )  ->  ( (
( G `  (
w  +  1 ) )  |`  ( M ... k ) )  Fn  ( M ... w
)  <->  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) )  Fn  ( M ... w
) ) )
130127, 129mpbiri 225 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z
)  /\  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) ) ) )  ->  ( ( G `  ( w  +  1 ) )  |`  ( M ... k
) )  Fn  ( M ... w ) )
131 fndm 5503 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( ( ( G `  (
w  +  1 ) )  |`  ( M ... k ) )  Fn  ( M ... w
)  ->  dom  ( ( G `  ( w  +  1 ) )  |`  ( M ... k
) )  =  ( M ... w ) )
132130, 131syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z
)  /\  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) ) ) )  ->  dom  ( ( G `  ( w  +  1 ) )  |`  ( M ... k
) )  =  ( M ... w ) )
133125, 132eqtr3d 2438 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z
)  /\  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) ) ) )  ->  ( M ... k )  =  ( M ... w ) )
134 simplr 732 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z
)  /\  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) ) ) )  ->  k  e.  Z )
135134, 64syl6eleq 2494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z
)  /\  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) ) ) )  ->  k  e.  ( ZZ>= `  M )
)
136 fzopth 11045 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( ( M ... k )  =  ( M ... w
)  <->  ( M  =  M  /\  k  =  w ) ) )
137135, 136syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z
)  /\  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) ) ) )  ->  ( ( M ... k )  =  ( M ... w
)  <->  ( M  =  M  /\  k  =  w ) ) )
138133, 137mpbid 202 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z
)  /\  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) ) ) )  ->  ( M  =  M  /\  k  =  w ) )
139138simprd 450 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z
)  /\  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) ) ) )  ->  k  =  w )
140139oveq1d 6055 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z
)  /\  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) ) ) )  ->  ( k  +  1 )  =  ( w  +  1 ) )
141140oveq2d 6056 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z
)  /\  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) ) ) )  ->  ( M ... ( k  +  1 ) )  =  ( M ... ( w  +  1 ) ) )
142 elfzp1 11053 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( x  e.  ( M ... (
k  +  1 ) )  <->  ( x  e.  ( M ... k
)  \/  x  =  ( k  +  1 ) ) ) )
143135, 142syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z
)  /\  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) ) ) )  ->  ( x  e.  ( M ... (
k  +  1 ) )  <->  ( x  e.  ( M ... k
)  \/  x  =  ( k  +  1 ) ) ) )
144133reseq2d 5105 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z
)  /\  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) ) ) )  ->  ( (
m  e.  ( M ... ( w  + 
1 ) )  |->  ( ( G `  m
) `  m )
)  |`  ( M ... k ) )  =  ( ( m  e.  ( M ... (
w  +  1 ) )  |->  ( ( G `
 m ) `  m ) )  |`  ( M ... w ) ) )
145 fzssp1 11051 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( M ... w )  C_  ( M ... ( w  +  1 ) )
146 resmpt 5150 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( ( M ... w ) 
C_  ( M ... ( w  +  1
) )  ->  (
( m  e.  ( M ... ( w  +  1 ) ) 
|->  ( ( G `  m ) `  m
) )  |`  ( M ... w ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) ) )
147145, 146ax-mp 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( ( m  e.  ( M ... ( w  + 
1 ) )  |->  ( ( G `  m
) `  m )
)  |`  ( M ... w ) )  =  ( m  e.  ( M ... w ) 
|->  ( ( G `  m ) `  m
) )
148144, 147syl6req 2453 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z
)  /\  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) ) ) )  ->  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) )  =  ( ( m  e.  ( M ... (
w  +  1 ) )  |->  ( ( G `
 m ) `  m ) )  |`  ( M ... k ) ) )
149128, 148eqtrd 2436 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z
)  /\  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) ) ) )  ->  ( ( G `  ( w  +  1 ) )  |`  ( M ... k
) )  =  ( ( m  e.  ( M ... ( w  +  1 ) ) 
|->  ( ( G `  m ) `  m
) )  |`  ( M ... k ) ) )
150149fveq1d 5689 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z
)  /\  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) ) ) )  ->  ( (
( G `  (
w  +  1 ) )  |`  ( M ... k ) ) `  x )  =  ( ( ( m  e.  ( M ... (
w  +  1 ) )  |->  ( ( G `
 m ) `  m ) )  |`  ( M ... k ) ) `  x ) )
151 fvres 5704 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( x  e.  ( M ... k )  ->  (
( ( G `  ( w  +  1
) )  |`  ( M ... k ) ) `
 x )  =  ( ( G `  ( w  +  1
) ) `  x
) )
152 fvres 5704 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( x  e.  ( M ... k )  ->  (
( ( m  e.  ( M ... (
w  +  1 ) )  |->  ( ( G `
 m ) `  m ) )  |`  ( M ... k ) ) `  x )  =  ( ( m  e.  ( M ... ( w  +  1
) )  |->  ( ( G `  m ) `
 m ) ) `
 x ) )
153151, 152eqeq12d 2418 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( x  e.  ( M ... k )  ->  (
( ( ( G `
 ( w  + 
1 ) )  |`  ( M ... k ) ) `  x )  =  ( ( ( m  e.  ( M ... ( w  + 
1 ) )  |->  ( ( G `  m
) `  m )
)  |`  ( M ... k ) ) `  x )  <->  ( ( G `  ( w  +  1 ) ) `
 x )  =  ( ( m  e.  ( M ... (
w  +  1 ) )  |->  ( ( G `
 m ) `  m ) ) `  x ) ) )
154150, 153syl5ibcom 212 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z
)  /\  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) ) ) )  ->  ( x  e.  ( M ... k
)  ->  ( ( G `  ( w  +  1 ) ) `
 x )  =  ( ( m  e.  ( M ... (
w  +  1 ) )  |->  ( ( G `
 m ) `  m ) ) `  x ) ) )
155140eqeq2d 2415 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z
)  /\  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) ) ) )  ->  ( x  =  ( k  +  1 )  <->  x  =  ( w  +  1
) ) )
156139, 135eqeltrrd 2479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z
)  /\  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) ) ) )  ->  w  e.  ( ZZ>= `  M )
)
157 peano2uz 10486 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( w  e.  ( ZZ>= `  M
)  ->  ( w  +  1 )  e.  ( ZZ>= `  M )
)
158 eluzfz2 11021 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( ( w  +  1 )  e.  ( ZZ>= `  M
)  ->  ( w  +  1 )  e.  ( M ... (
w  +  1 ) ) )
159156, 157, 1583syl 19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z
)  /\  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) ) ) )  ->  ( w  +  1 )  e.  ( M ... (
w  +  1 ) ) )
160 fveq2 5687 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  ( m  =  ( w  + 
1 )  ->  ( G `  m )  =  ( G `  ( w  +  1
) ) )
161 id 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  ( m  =  ( w  + 
1 )  ->  m  =  ( w  + 
1 ) )
162160, 161fveq12d 5693 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( m  =  ( w  + 
1 )  ->  (
( G `  m
) `  m )  =  ( ( G `
 ( w  + 
1 ) ) `  ( w  +  1
) ) )
163 eqid 2404 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( m  e.  ( M ... ( w  +  1
) )  |->  ( ( G `  m ) `
 m ) )  =  ( m  e.  ( M ... (
w  +  1 ) )  |->  ( ( G `
 m ) `  m ) )
164 fvex 5701 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( ( G `  ( w  +  1 ) ) `
 ( w  + 
1 ) )  e. 
_V
165162, 163, 164fvmpt 5765 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( ( w  +  1 )  e.  ( M ... ( w  +  1
) )  ->  (
( m  e.  ( M ... ( w  +  1 ) ) 
|->  ( ( G `  m ) `  m
) ) `  (
w  +  1 ) )  =  ( ( G `  ( w  +  1 ) ) `
 ( w  + 
1 ) ) )
166159, 165syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z
)  /\  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) ) ) )  ->  ( (
m  e.  ( M ... ( w  + 
1 ) )  |->  ( ( G `  m
) `  m )
) `  ( w  +  1 ) )  =  ( ( G `
 ( w  + 
1 ) ) `  ( w  +  1
) ) )
167166eqcomd 2409 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z
)  /\  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) ) ) )  ->  ( ( G `  ( w  +  1 ) ) `
 ( w  + 
1 ) )  =  ( ( m  e.  ( M ... (
w  +  1 ) )  |->  ( ( G `
 m ) `  m ) ) `  ( w  +  1
) ) )
168 fveq2 5687 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( x  =  ( w  + 
1 )  ->  (
( G `  (
w  +  1 ) ) `  x )  =  ( ( G `
 ( w  + 
1 ) ) `  ( w  +  1
) ) )
169 fveq2 5687 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( x  =  ( w  + 
1 )  ->  (
( m  e.  ( M ... ( w  +  1 ) ) 
|->  ( ( G `  m ) `  m
) ) `  x
)  =  ( ( m  e.  ( M ... ( w  + 
1 ) )  |->  ( ( G `  m
) `  m )
) `  ( w  +  1 ) ) )
170168, 169eqeq12d 2418 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( x  =  ( w  + 
1 )  ->  (
( ( G `  ( w  +  1
) ) `  x
)  =  ( ( m  e.  ( M ... ( w  + 
1 ) )  |->  ( ( G `  m
) `  m )
) `  x )  <->  ( ( G `  (
w  +  1 ) ) `  ( w  +  1 ) )  =  ( ( m  e.  ( M ... ( w  +  1
) )  |->  ( ( G `  m ) `
 m ) ) `
 ( w  + 
1 ) ) ) )
171167, 170syl5ibrcom 214 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z
)  /\  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) ) ) )  ->  ( x  =  ( w  + 
1 )  ->  (
( G `  (
w  +  1 ) ) `  x )  =  ( ( m  e.  ( M ... ( w  +  1
) )  |->  ( ( G `  m ) `
 m ) ) `
 x ) ) )
172155, 171sylbid 207 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z
)  /\  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) ) ) )  ->  ( x  =  ( k  +  1 )  ->  (
( G `  (
w  +  1 ) ) `  x )  =  ( ( m  e.  ( M ... ( w  +  1
) )  |->  ( ( G `  m ) `
 m ) ) `
 x ) ) )
173154, 172jaod 370 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z
)  /\  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) ) ) )  ->  ( (
x  e.  ( M ... k )  \/  x  =  ( k  +  1 ) )  ->  ( ( G `
 ( w  + 
1 ) ) `  x )  =  ( ( m  e.  ( M ... ( w  +  1 ) ) 
|->  ( ( G `  m ) `  m
) ) `  x
) ) )
174143, 173sylbid 207 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z
)  /\  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) ) ) )  ->  ( x  e.  ( M ... (
k  +  1 ) )  ->  ( ( G `  ( w  +  1 ) ) `
 x )  =  ( ( m  e.  ( M ... (
w  +  1 ) )  |->  ( ( G `
 m ) `  m ) ) `  x ) ) )
175174ralrimiv 2748 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z
)  /\  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) ) ) )  ->  A. x  e.  ( M ... (
k  +  1 ) ) ( ( G `
 ( w  + 
1 ) ) `  x )  =  ( ( m  e.  ( M ... ( w  +  1 ) ) 
|->  ( ( G `  m ) `  m
) ) `  x
) )
176 ffn 5550 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  -> 
( G `  (
w  +  1 ) )  Fn  ( M ... ( k  +  1 ) ) )
177176ad2antrl 709 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z
)  /\  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) ) ) )  ->  ( G `  ( w  +  1 ) )  Fn  ( M ... ( k  +  1 ) ) )
17858, 163fnmpti 5532 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( m  e.  ( M ... ( w  +  1
) )  |->  ( ( G `  m ) `
 m ) )  Fn  ( M ... ( w  +  1
) )
179 eqfnfv2 5787 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( G `  (
w  +  1 ) )  Fn  ( M ... ( k  +  1 ) )  /\  ( m  e.  ( M ... ( w  + 
1 ) )  |->  ( ( G `  m
) `  m )
)  Fn  ( M ... ( w  + 
1 ) ) )  ->  ( ( G `
 ( w  + 
1 ) )  =  ( m  e.  ( M ... ( w  +  1 ) ) 
|->  ( ( G `  m ) `  m
) )  <->  ( ( M ... ( k  +  1 ) )  =  ( M ... (
w  +  1 ) )  /\  A. x  e.  ( M ... (
k  +  1 ) ) ( ( G `
 ( w  + 
1 ) ) `  x )  =  ( ( m  e.  ( M ... ( w  +  1 ) ) 
|->  ( ( G `  m ) `  m
) ) `  x
) ) ) )
180177, 178, 179sylancl 644 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z
)  /\  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) ) ) )  ->  ( ( G `  ( w  +  1 ) )  =  ( m  e.  ( M ... (
w  +  1 ) )  |->  ( ( G `
 m ) `  m ) )  <->  ( ( M ... ( k  +  1 ) )  =  ( M ... (
w  +  1 ) )  /\  A. x  e.  ( M ... (
k  +  1 ) ) ( ( G `
 ( w  + 
1 ) ) `  x )  =  ( ( m  e.  ( M ... ( w  +  1 ) ) 
|->  ( ( G `  m ) `  m
) ) `  x
) ) ) )
181141, 175, 180mpbir2and 889 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z
)  /\  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) ) ) )  ->  ( G `  ( w  +  1 ) )  =  ( m  e.  ( M ... ( w  + 
1 ) )  |->  ( ( G `  m
) `  m )
) )
182181expr 599 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z
)  /\  ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A )  ->  (
( ( G `  ( w  +  1
) )  |`  ( M ... k ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) )  -> 
( G `  (
w  +  1 ) )  =  ( m  e.  ( M ... ( w  +  1
) )  |->  ( ( G `  m ) `
 m ) ) ) )
183 eqeq1 2410 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( G `  w )  =  ( ( G `
 ( w  + 
1 ) )  |`  ( M ... k ) )  ->  ( ( G `  w )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) )  <->  ( ( G `  ( w  +  1 ) )  |`  ( M ... k
) )  =  ( m  e.  ( M ... w )  |->  ( ( G `  m
) `  m )
) ) )
184183imbi1d 309 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( G `  w )  =  ( ( G `
 ( w  + 
1 ) )  |`  ( M ... k ) )  ->  ( (
( G `  w
)  =  ( m  e.  ( M ... w )  |->  ( ( G `  m ) `
 m ) )  ->  ( G `  ( w  +  1
) )  =  ( m  e.  ( M ... ( w  + 
1 ) )  |->  ( ( G `  m
) `  m )
) )  <->  ( (
( G `  (
w  +  1 ) )  |`  ( M ... k ) )  =  ( m  e.  ( M ... w ) 
|->  ( ( G `  m ) `  m
) )  ->  ( G `  ( w  +  1 ) )  =  ( m  e.  ( M ... (
w  +  1 ) )  |->  ( ( G `
 m ) `  m ) ) ) ) )
185182, 184syl5ibrcom 214 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z
)  /\  ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A )  ->  (
( G `  w
)  =  ( ( G `  ( w  +  1 ) )  |`  ( M ... k
) )  ->  (
( G `  w
)  =  ( m  e.  ( M ... w )  |->  ( ( G `  m ) `
 m ) )  ->  ( G `  ( w  +  1
) )  =  ( m  e.  ( M ... ( w  + 
1 ) )  |->  ( ( G `  m
) `  m )
) ) ) )
186185expimpd 587 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z )  ->  (
( ( G `  ( w  +  1
) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( G `
 w )  =  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) ) )  ->  ( ( G `  w )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) )  -> 
( G `  (
w  +  1 ) )  =  ( m  e.  ( M ... ( w  +  1
) )  |->  ( ( G `  m ) `
 m ) ) ) ) )
187186ex 424 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  w  e.  Z )  ->  (
k  e.  Z  -> 
( ( ( G `
 ( w  + 
1 ) ) : ( M ... (
k  +  1 ) ) --> A  /\  ( G `  w )  =  ( ( G `
 ( w  + 
1 ) )  |`  ( M ... k ) ) )  ->  (
( G `  w
)  =  ( m  e.  ( M ... w )  |->  ( ( G `  m ) `
 m ) )  ->  ( G `  ( w  +  1
) )  =  ( m  e.  ( M ... ( w  + 
1 ) )  |->  ( ( G `  m
) `  m )
) ) ) ) )
18874, 119, 187rexlimd 2787 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  w  e.  Z )  ->  ( E. k  e.  Z  ( ( G `  ( w  +  1
) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( G `
 w )  =  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) ) )  ->  ( ( G `  w )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) )  -> 
( G `  (
w  +  1 ) )  =  ( m  e.  ( M ... ( w  +  1
) )  |->  ( ( G `  m ) `
 m ) ) ) ) )
189118, 188mpd 15 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  w  e.  Z )  ->  (
( G `  w
)  =  ( m  e.  ( M ... w )  |->  ( ( G `  m ) `
 m ) )  ->  ( G `  ( w  +  1
) )  =  ( m  e.  ( M ... ( w  + 
1 ) )  |->  ( ( G `  m
) `  m )
) ) )
190189expcom 425 . . . . . . . . . . . . . . . . . . . . 21  |-  ( w  e.  Z  ->  ( ph  ->  ( ( G `
 w )  =  ( m  e.  ( M ... w ) 
|->  ( ( G `  m ) `  m
) )  ->  ( G `  ( w  +  1 ) )  =  ( m  e.  ( M ... (
w  +  1 ) )  |->  ( ( G `
 m ) `  m ) ) ) ) )
19165, 190sylbir 205 . . . . . . . . . . . . . . . . . . . 20  |-  ( w  e.  ( ZZ>= `  M
)  ->  ( ph  ->  ( ( G `  w )  =  ( m  e.  ( M ... w )  |->  ( ( G `  m
) `  m )
)  ->  ( G `  ( w  +  1 ) )  =  ( m  e.  ( M ... ( w  + 
1 ) )  |->  ( ( G `  m
) `  m )
) ) ) )
192191a2d 24 . . . . . . . . . . . . . . . . . . 19  |-  ( w  e.  ( ZZ>= `  M
)  ->  ( ( ph  ->  ( G `  w )  =  ( m  e.  ( M ... w )  |->  ( ( G `  m
) `  m )
) )  ->  ( ph  ->  ( G `  ( w  +  1
) )  =  ( m  e.  ( M ... ( w  + 
1 ) )  |->  ( ( G `  m
) `  m )
) ) ) )
19325, 30, 35, 40, 63, 192uzind4 10490 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( ph  ->  ( G `  k
)  =  ( m  e.  ( M ... k )  |->  ( ( G `  m ) `
 m ) ) ) )
194193, 64eleq2s 2496 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  Z  ->  ( ph  ->  ( G `  k )  =  ( m  e.  ( M ... k )  |->  ( ( G `  m
) `  m )
) ) )
195194impcom 420 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( m  e.  ( M ... k
)  |->  ( ( G `
 m ) `  m ) ) )
196195dmeqd 5031 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  Z )  ->  dom  ( G `  k )  =  dom  ( m  e.  ( M ... k )  |->  ( ( G `  m ) `
 m ) ) )
197 dmmptg 5326 . . . . . . . . . . . . . . . 16  |-  ( A. m  e.  ( M ... k ) ( ( G `  m ) `
 m )  e. 
_V  ->  dom  ( m  e.  ( M ... k
)  |->  ( ( G `
 m ) `  m ) )  =  ( M ... k
) )
19858a1i 11 . . . . . . . . . . . . . . . 16  |-  ( m  e.  ( M ... k )  ->  (
( G `  m
) `  m )  e.  _V )
199197, 198mprg 2735 . . . . . . . . . . . . . . 15  |-  dom  (
m  e.  ( M ... k )  |->  ( ( G `  m
) `  m )
)  =  ( M ... k )
200196, 199syl6eq 2452 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  Z )  ->  dom  ( G `  k )  =  ( M ... k ) )
201200eqeq1d 2412 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  Z )  ->  ( dom  ( G `  k
)  =  ( M ... n )  <->  ( M ... k )  =  ( M ... n ) ) )
202 simpr 448 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  Z )  ->  k  e.  Z )
203202, 64syl6eleq 2494 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  Z )  ->  k  e.  ( ZZ>= `  M )
)
204 fzopth 11045 . . . . . . . . . . . . . 14  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( ( M ... k )  =  ( M ... n
)  <->  ( M  =  M  /\  k  =  n ) ) )
205203, 204syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  Z )  ->  (
( M ... k
)  =  ( M ... n )  <->  ( M  =  M  /\  k  =  n ) ) )
206201, 205bitrd 245 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  Z )  ->  ( dom  ( G `  k
)  =  ( M ... n )  <->  ( M  =  M  /\  k  =  n ) ) )
207 simpr 448 . . . . . . . . . . . 12  |-  ( ( M  =  M  /\  k  =  n )  ->  k  =  n )
208206, 207syl6bi 220 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  Z )  ->  ( dom  ( G `  k
)  =  ( M ... n )  -> 
k  =  n ) )
20920, 208syl5 30 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  Z )  ->  (
( ( G `  k ) : ( M ... n ) --> A  /\  [. ( G `  k )  /  g ]. ps )  ->  k  =  n ) )
210 oveq2 6048 . . . . . . . . . . . . . 14  |-  ( n  =  k  ->  ( M ... n )  =  ( M ... k
) )
211210feq2d 5540 . . . . . . . . . . . . 13  |-  ( n  =  k  ->  (
( G `  k
) : ( M ... n ) --> A  <-> 
( G `  k
) : ( M ... k ) --> A ) )
212 sdc.4 . . . . . . . . . . . . . 14  |-  ( n  =  k  ->  ( ps 
<->  th ) )
213212sbcbidv 3175 . . . . . . . . . . . . 13  |-  ( n  =  k  ->  ( [. ( G `  k
)  /  g ]. ps 
<-> 
[. ( G `  k )  /  g ]. th ) )
214211, 213anbi12d 692 . . . . . . . . . . . 12  |-  ( n  =  k  ->  (
( ( G `  k ) : ( M ... n ) --> A  /\  [. ( G `  k )  /  g ]. ps ) 
<->  ( ( G `  k ) : ( M ... k ) --> A  /\  [. ( G `  k )  /  g ]. th ) ) )
215214equcoms 1689 . . . . . . . . . . 11  |-  ( k  =  n  ->  (
( ( G `  k ) : ( M ... n ) --> A  /\  [. ( G `  k )  /  g ]. ps ) 
<->  ( ( G `  k ) : ( M ... k ) --> A  /\  [. ( G `  k )  /  g ]. th ) ) )
216215biimpcd 216 . . . . . . . . . 10  |-  ( ( ( G `  k
) : ( M ... n ) --> A  /\  [. ( G `
 k )  / 
g ]. ps )  -> 
( k  =  n  ->  ( ( G `
 k ) : ( M ... k
) --> A  /\  [. ( G `  k )  /  g ]. th ) ) )
217209, 216sylcom 27 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  Z )  ->  (
( ( G `  k ) : ( M ... n ) --> A  /\  [. ( G `  k )  /  g ]. ps )  ->  ( ( G `
 k ) : ( M ... k
) --> A  /\  [. ( G `  k )  /  g ]. th ) ) )
218217rexlimdvw 2793 . . . . . . . 8  |-  ( (
ph  /\  k  e.  Z )  ->  ( E. n  e.  Z  ( ( G `  k ) : ( M ... n ) --> A  /\  [. ( G `  k )  /  g ]. ps )  ->  ( ( G `
 k ) : ( M ... k
) --> A  /\  [. ( G `  k )  /  g ]. th ) ) )
21918, 218mpd 15 . . . . . . 7  |-  ( (
ph  /\  k  e.  Z )  ->  (
( G `  k
) : ( M ... k ) --> A  /\  [. ( G `
 k )  / 
g ]. th ) )
220219simpld 446 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k ) : ( M ... k ) --> A )
221 eluzfz2 11021 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  M
)  ->  k  e.  ( M ... k ) )
222203, 221syl 16 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  k  e.  ( M ... k
) )
223220, 222ffvelrnd 5830 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  (
( G `  k
) `  k )  e.  A )
224223ex 424 . . . 4  |-  ( ph  ->  ( k  e.  Z  ->  ( ( G `  k ) `  k
)  e.  A ) )
2251, 224ralrimi 2747 . . 3  |-  ( ph  ->  A. k  e.  Z  ( ( G `  k ) `  k
)  e.  A )
22643cbvmptv 4260 . . . 4  |-  ( m  e.  Z  |->  ( ( G `  m ) `
 m ) )  =  ( k  e.  Z  |->  ( ( G `
 k ) `  k ) )
227226fmpt 5849 . . 3  |-  ( A. k  e.  Z  (
( G `  k
) `  k )  e.  A  <->  ( m  e.  Z  |->  ( ( G `
 m ) `  m ) ) : Z --> A )
228225, 227sylib 189 . 2  |-  ( ph  ->  ( m  e.  Z  |->  ( ( G `  m ) `  m
) ) : Z --> A )
229219simprd 450 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  [. ( G `  k )  /  g ]. th )
230 dfsbcq 3123 . . . . . . 7  |-  ( ( G `  k )  =  ( m  e.  ( M ... k
)  |->  ( ( G `
 m ) `  m ) )  -> 
( [. ( G `  k )  /  g ]. th  <->  [. ( m  e.  ( M ... k
)  |->  ( ( G `
 m ) `  m ) )  / 
g ]. th ) )
231195, 230syl 16 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  ( [. ( G `  k
)  /  g ]. th 
<-> 
[. ( m  e.  ( M ... k
)  |->  ( ( G `
 m ) `  m ) )  / 
g ]. th ) )
232229, 231mpbid 202 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  [. (
m  e.  ( M ... k )  |->  ( ( G `  m
) `  m )
)  /  g ]. th )
233232ex 424 . . . 4  |-  ( ph  ->  ( k  e.  Z  ->  [. ( m  e.  ( M ... k
)  |->  ( ( G `
 m ) `  m ) )  / 
g ]. th ) )
2341, 233ralrimi 2747 . . 3  |-  ( ph  ->  A. k  e.  Z  [. ( m  e.  ( M ... k ) 
|->  ( ( G `  m ) `  m
) )  /  g ]. th )
235 mpteq1 4249 . . . . . 6  |-  ( ( M ... n )  =  ( M ... k )  ->  (
m  e.  ( M ... n )  |->  ( ( G `  m
) `  m )
)  =  ( m  e.  ( M ... k )  |->  ( ( G `  m ) `
 m ) ) )
236 dfsbcq 3123 . . . . . 6  |-  ( ( m  e.  ( M ... n )  |->  ( ( G `  m
) `  m )
)  =  ( m  e.  ( M ... k )  |->  ( ( G `  m ) `
 m ) )  ->  ( [. (
m  e.  ( M ... n )  |->  ( ( G `  m
) `  m )
)  /  g ]. ps 
<-> 
[. ( m  e.  ( M ... k
)  |->  ( ( G `
 m ) `  m ) )  / 
g ]. ps ) )
237210, 235, 2363syl 19 . . . . 5  |-  ( n  =  k  ->  ( [. ( m  e.  ( M ... n ) 
|->  ( ( G `  m ) `  m
) )  /  g ]. ps  <->  [. ( m  e.  ( M ... k
)  |->  ( ( G `
 m ) `  m ) )  / 
g ]. ps ) )
238212sbcbidv 3175 . . . . 5  |-  ( n  =  k  ->  ( [. ( m  e.  ( M ... k ) 
|->  ( ( G `  m ) `  m
) )  /  g ]. ps  <->  [. ( m  e.  ( M ... k
)  |->  ( ( G `
 m ) `  m ) )  / 
g ]. th ) )
239237, 238bitrd 245 . . . 4  |-  ( n  =  k  ->  ( [. ( m  e.  ( M ... n ) 
|->  ( ( G `  m ) `  m
) )  /  g ]. ps  <->  [. ( m  e.  ( M ... k
)  |->  ( ( G `
 m ) `  m ) )  / 
g ]. th ) )
240239cbvralv 2892 . . 3  |-  ( A. n  e.  Z  [. (
m  e.  ( M ... n )  |->  ( ( G `  m
) `  m )
)  /  g ]. ps 
<-> 
A. k  e.  Z  [. ( m  e.  ( M ... k ) 
|->  ( ( G `  m ) `  m
) )  /  g ]. th )
241234, 240sylibr 204 . 2  |-  ( ph  ->  A. n  e.  Z  [. ( m  e.  ( M ... n ) 
|->  ( ( G `  m ) `  m
) )  /  g ]. ps )
24272mptex 5925 . . 3  |-  ( m  e.  Z  |->  ( ( G `  m ) `
 m ) )  e.  _V
243 feq1 5535 . . . 4  |-  ( f  =  ( m  e.  Z  |->  ( ( G `
 m ) `  m ) )  -> 
( f : Z --> A 
<->  ( m  e.  Z  |->  ( ( G `  m ) `  m
) ) : Z --> A ) )
244 vex 2919 . . . . . . . 8  |-  f  e. 
_V
245244resex 5145 . . . . . . 7  |-  ( f  |`  ( M ... n
) )  e.  _V
246 sdc.2 . . . . . . 7  |-  ( g  =  ( f  |`  ( M ... n ) )  ->  ( ps  <->  ch ) )
247245, 246sbcie 3155 . . . . . 6  |-  ( [. ( f  |`  ( M ... n ) )  /  g ]. ps  <->  ch )
248 reseq1 5099 . . . . . . . 8  |-  ( f  =  ( m  e.  Z  |->  ( ( G `
 m ) `  m ) )  -> 
( f  |`  ( M ... n ) )  =  ( ( m  e.  Z  |->  ( ( G `  m ) `
 m ) )  |`  ( M ... n
) ) )
249 fzssuz 11049 . . . . . . . . . 10  |-  ( M ... n )  C_  ( ZZ>= `  M )
250249, 64sseqtr4i 3341 . . . . . . . . 9  |-  ( M ... n )  C_  Z
251 resmpt 5150 . . . . . . . . 9  |-  ( ( M ... n ) 
C_  Z  ->  (
( m  e.  Z  |->  ( ( G `  m ) `  m
) )  |`  ( M ... n ) )  =  ( m  e.  ( M ... n
)  |->  ( ( G `
 m ) `  m ) ) )
252250, 251ax-mp 8 . . . . . . . 8  |-  ( ( m  e.  Z  |->  ( ( G `  m
) `  m )
)  |`  ( M ... n ) )  =  ( m  e.  ( M ... n ) 
|->  ( ( G `  m ) `  m
) )
253248, 252syl6eq 2452 . . . . . . 7  |-  ( f  =  ( m  e.  Z  |->  ( ( G `
 m ) `  m ) )  -> 
( f  |`  ( M ... n ) )  =  ( m  e.  ( M ... n
)  |->  ( ( G `
 m ) `  m ) ) )
254 dfsbcq 3123 . . . . . . 7  |-  ( ( f  |`  ( M ... n ) )  =  ( m  e.  ( M ... n ) 
|->  ( ( G `  m ) `  m
) )  ->  ( [. ( f  |`  ( M ... n ) )  /  g ]. ps  <->  [. ( m  e.  ( M ... n ) 
|->  ( ( G `  m ) `  m
) )  /  g ]. ps ) )
255253, 254syl 16 . . . . . 6  |-  ( f  =  ( m  e.  Z  |->  ( ( G `
 m ) `  m ) )  -> 
( [. ( f  |`  ( M ... n ) )  /  g ]. ps 
<-> 
[. ( m  e.  ( M ... n
)  |->  ( ( G `
 m ) `  m ) )  / 
g ]. ps ) )
256247, 255syl5bbr 251 . . . . 5  |-  ( f  =  ( m  e.  Z  |->  ( ( G `
 m ) `  m ) )  -> 
( ch  <->  [. ( m  e.  ( M ... n )  |->  ( ( G `  m ) `
 m ) )  /  g ]. ps ) )
257256ralbidv 2686 . . . 4  |-  ( f  =  ( m  e.  Z  |->  ( ( G `
 m ) `  m ) )  -> 
( A. n  e.  Z  ch  <->  A. n  e.  Z  [. ( m  e.  ( M ... n )  |->  ( ( G `  m ) `
 m ) )  /  g ]. ps ) )
258243, 257anbi12d 692 . . 3  |-  ( f  =  ( m  e.  Z  |->  ( ( G `
 m ) `  m ) )  -> 
( ( f : Z --> A  /\  A. n  e.  Z  ch ) 
<->  ( ( m  e.  Z  |->  ( ( G `
 m ) `  m ) ) : Z --> A  /\  A. n  e.  Z  [. (
m  e.  ( M ... n )  |->  ( ( G `  m
) `  m )
)  /  g ]. ps ) ) )
259242, 258spcev 3003 . 2  |-  ( ( ( m  e.  Z  |->  ( ( G `  m ) `  m
) ) : Z --> A  /\  A. n  e.  Z  [. ( m  e.  ( M ... n )  |->  ( ( G `  m ) `
 m ) )  /  g ]. ps )  ->  E. f ( f : Z --> A  /\  A. n  e.  Z  ch ) )
260228, 241, 259syl2anc 643 1  |-  ( ph  ->  E. f ( f : Z --> A  /\  A. n  e.  Z  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936   E.wex 1547   F/wnf 1550    = wceq 1649    e. wcel 1721   {cab 2390   A.wral 2666   E.wrex 2667   _Vcvv 2916   [.wsbc 3121    C_ wss 3280   {csn 3774    e. cmpt 4226   dom cdm 4837    |` cres 4839    Fn wfn 5408   -->wf 5409   ` cfv 5413  (class class class)co 6040    e. cmpt2 6042    ^m cmap 6977   1c1 8947    + caddc 8949   ZZcz 10238   ZZ>=cuz 10444   ...cfz 10999
This theorem is referenced by:  sdclem1  26337
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-er 6864  df-map 6979  df-en 7069  df-dom 7070  df-sdom 7071  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-n0 10178  df-z 10239  df-uz 10445  df-fz 11000
  Copyright terms: Public domain W3C validator