Mathbox for Jeff Madsen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sdc Structured version   Visualization version   Unicode version

Theorem sdc 32137
 Description: Strong dependent choice. Suppose we may choose an element of such that property holds, and suppose that if we have already chosen the first elements (represented here by a function from to ), we may choose another element so that all elements taken together have property . Then there exists an infinite sequence of elements of such that the first terms of this sequence satisfy for all . This theorem allows us to construct infinite seqeunces where each term depends on all the previous terms in the sequence. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 3-Jun-2014.)
Hypotheses
Ref Expression
sdc.1
sdc.2
sdc.3
sdc.4
sdc.5
sdc.6
sdc.7
sdc.8
sdc.9
Assertion
Ref Expression
sdc
Distinct variable groups:   ,,,,,   ,,,,,   ,   ,,,   ,,,   ,   ,   ,   ,,,   ,,,,,   ,,,
Allowed substitution hints:   ()   (,)   (,,,)   (,,,)   (,)   (,)   (,,,)

Proof of Theorem sdc
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sdc.1 . 2
2 sdc.2 . 2
3 sdc.3 . 2
4 sdc.4 . 2
5 sdc.5 . 2
6 sdc.6 . 2
7 sdc.7 . 2
8 sdc.8 . 2
9 sdc.9 . 2
10 eqid 2471 . 2
11 eqid 2471 . . . 4
12 oveq2 6316 . . . . . . . 8
1312feq2d 5725 . . . . . . 7
1413, 4anbi12d 725 . . . . . 6
1514cbvrexv 3006 . . . . 5
1615abbii 2587 . . . 4
17 eqid 2471 . . . 4
1811, 16, 17mpt2eq123i 6373 . . 3
19 eqidd 2472 . . . 4
20 eqeq1 2475 . . . . . . 7
21203anbi2d 1370 . . . . . 6
2221rexbidv 2892 . . . . 5
2322abbidv 2589 . . . 4
2419, 23cbvmpt2v 6390 . . 3
2518, 24eqtr3i 2495 . 2
261, 2, 3, 4, 5, 6, 7, 8, 9, 10, 25sdclem1 32136 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 189   wa 376   w3a 1007   wceq 1452  wex 1671   wcel 1904  cab 2457  wral 2756  wrex 2757  csn 3959   cres 4841  wf 5585  cfv 5589  (class class class)co 6308   cmpt2 6310  c1 9558   caddc 9560  cz 10961  cuz 11182  cfz 11810 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164  ax-dc 8894  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634 This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-er 7381  df-map 7492  df-en 7588  df-dom 7589  df-sdom 7590  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-nn 10632  df-n0 10894  df-z 10962  df-uz 11183  df-fz 11811 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator