Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  scottn0f Structured version   Unicode version

Theorem scottn0f 29008
Description: A version of scott0f 29007 with inequalities instead of equalities. (Contributed by Giovanni Mascellani, 19-Aug-2018.)
Hypotheses
Ref Expression
scottn0f.1  |-  F/_ y A
scottn0f.2  |-  F/_ x A
Assertion
Ref Expression
scottn0f  |-  ( A  =/=  (/)  <->  { x  e.  A  |  A. y  e.  A  ( rank `  x )  C_  ( rank `  y
) }  =/=  (/) )
Distinct variable group:    x, y
Allowed substitution hints:    A( x, y)

Proof of Theorem scottn0f
StepHypRef Expression
1 scottn0f.1 . . 3  |-  F/_ y A
2 scottn0f.2 . . 3  |-  F/_ x A
31, 2scott0f 29007 . 2  |-  ( A  =  (/)  <->  { x  e.  A  |  A. y  e.  A  ( rank `  x )  C_  ( rank `  y
) }  =  (/) )
43necon3bii 2634 1  |-  ( A  =/=  (/)  <->  { x  e.  A  |  A. y  e.  A  ( rank `  x )  C_  ( rank `  y
) }  =/=  (/) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184   F/_wnfc 2575    =/= wne 2620   A.wral 2736   {crab 2740    C_ wss 3349   (/)c0 3658   ` cfv 5439   rankcrnk 7991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-ral 2741  df-rex 2742  df-reu 2743  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-pss 3365  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-tp 3903  df-op 3905  df-uni 4113  df-int 4150  df-iun 4194  df-iin 4195  df-br 4314  df-opab 4372  df-mpt 4373  df-tr 4407  df-eprel 4653  df-id 4657  df-po 4662  df-so 4663  df-fr 4700  df-we 4702  df-ord 4743  df-on 4744  df-lim 4745  df-suc 4746  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-om 6498  df-recs 6853  df-rdg 6887  df-r1 7992  df-rank 7993
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator