MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scottexs Structured version   Unicode version

Theorem scottexs 8200
Description: Theorem scheme version of scottex 8198. The collection of all  x of minimum rank such that 
ph ( x ) is true, is a set. (Contributed by NM, 13-Oct-2003.)
Assertion
Ref Expression
scottexs  |-  { x  |  ( ph  /\  A. y ( [. y  /  x ]. ph  ->  (
rank `  x )  C_  ( rank `  y
) ) ) }  e.  _V
Distinct variable groups:    x, y    ph, y
Allowed substitution hint:    ph( x)

Proof of Theorem scottexs
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 nfcv 2614 . . . 4  |-  F/_ z { x  |  ph }
2 nfab1 2616 . . . 4  |-  F/_ x { x  |  ph }
3 nfv 1674 . . . . 5  |-  F/ x
( rank `  z )  C_  ( rank `  y
)
42, 3nfral 2882 . . . 4  |-  F/ x A. y  e.  { x  |  ph }  ( rank `  z )  C_  ( rank `  y )
5 nfv 1674 . . . 4  |-  F/ z A. y  e.  {
x  |  ph } 
( rank `  x )  C_  ( rank `  y
)
6 fveq2 5794 . . . . . 6  |-  ( z  =  x  ->  ( rank `  z )  =  ( rank `  x
) )
76sseq1d 3486 . . . . 5  |-  ( z  =  x  ->  (
( rank `  z )  C_  ( rank `  y
)  <->  ( rank `  x
)  C_  ( rank `  y ) ) )
87ralbidv 2843 . . . 4  |-  ( z  =  x  ->  ( A. y  e.  { x  |  ph }  ( rank `  z )  C_  ( rank `  y )  <->  A. y  e.  { x  |  ph }  ( rank `  x
)  C_  ( rank `  y ) ) )
91, 2, 4, 5, 8cbvrab 3070 . . 3  |-  { z  e.  { x  | 
ph }  |  A. y  e.  { x  |  ph }  ( rank `  z )  C_  ( rank `  y ) }  =  { x  e. 
{ x  |  ph }  |  A. y  e.  { x  |  ph }  ( rank `  x
)  C_  ( rank `  y ) }
10 df-rab 2805 . . 3  |-  { x  e.  { x  |  ph }  |  A. y  e.  { x  |  ph }  ( rank `  x
)  C_  ( rank `  y ) }  =  { x  |  (
x  e.  { x  |  ph }  /\  A. y  e.  { x  |  ph }  ( rank `  x )  C_  ( rank `  y ) ) }
11 abid 2439 . . . . 5  |-  ( x  e.  { x  | 
ph }  <->  ph )
12 df-ral 2801 . . . . . 6  |-  ( A. y  e.  { x  |  ph }  ( rank `  x )  C_  ( rank `  y )  <->  A. y
( y  e.  {
x  |  ph }  ->  ( rank `  x
)  C_  ( rank `  y ) ) )
13 df-sbc 3289 . . . . . . . 8  |-  ( [. y  /  x ]. ph  <->  y  e.  { x  |  ph }
)
1413imbi1i 325 . . . . . . 7  |-  ( (
[. y  /  x ]. ph  ->  ( rank `  x )  C_  ( rank `  y ) )  <-> 
( y  e.  {
x  |  ph }  ->  ( rank `  x
)  C_  ( rank `  y ) ) )
1514albii 1611 . . . . . 6  |-  ( A. y ( [. y  /  x ]. ph  ->  (
rank `  x )  C_  ( rank `  y
) )  <->  A. y
( y  e.  {
x  |  ph }  ->  ( rank `  x
)  C_  ( rank `  y ) ) )
1612, 15bitr4i 252 . . . . 5  |-  ( A. y  e.  { x  |  ph }  ( rank `  x )  C_  ( rank `  y )  <->  A. y
( [. y  /  x ]. ph  ->  ( rank `  x )  C_  ( rank `  y ) ) )
1711, 16anbi12i 697 . . . 4  |-  ( ( x  e.  { x  |  ph }  /\  A. y  e.  { x  |  ph }  ( rank `  x )  C_  ( rank `  y ) )  <-> 
( ph  /\  A. y
( [. y  /  x ]. ph  ->  ( rank `  x )  C_  ( rank `  y ) ) ) )
1817abbii 2586 . . 3  |-  { x  |  ( x  e. 
{ x  |  ph }  /\  A. y  e. 
{ x  |  ph }  ( rank `  x
)  C_  ( rank `  y ) ) }  =  { x  |  ( ph  /\  A. y ( [. y  /  x ]. ph  ->  (
rank `  x )  C_  ( rank `  y
) ) ) }
199, 10, 183eqtri 2485 . 2  |-  { z  e.  { x  | 
ph }  |  A. y  e.  { x  |  ph }  ( rank `  z )  C_  ( rank `  y ) }  =  { x  |  ( ph  /\  A. y ( [. y  /  x ]. ph  ->  (
rank `  x )  C_  ( rank `  y
) ) ) }
20 scottex 8198 . 2  |-  { z  e.  { x  | 
ph }  |  A. y  e.  { x  |  ph }  ( rank `  z )  C_  ( rank `  y ) }  e.  _V
2119, 20eqeltrri 2537 1  |-  { x  |  ( ph  /\  A. y ( [. y  /  x ]. ph  ->  (
rank `  x )  C_  ( rank `  y
) ) ) }  e.  _V
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369   A.wal 1368    e. wcel 1758   {cab 2437   A.wral 2796   {crab 2800   _Vcvv 3072   [.wsbc 3288    C_ wss 3431   ` cfv 5521   rankcrnk 8076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1954  ax-ext 2431  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4573  ax-pr 4634  ax-un 6477  ax-reg 7913  ax-inf2 7953
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2265  df-mo 2266  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2602  df-ne 2647  df-ral 2801  df-rex 2802  df-reu 2803  df-rab 2805  df-v 3074  df-sbc 3289  df-csb 3391  df-dif 3434  df-un 3436  df-in 3438  df-ss 3445  df-pss 3447  df-nul 3741  df-if 3895  df-pw 3965  df-sn 3981  df-pr 3983  df-tp 3985  df-op 3987  df-uni 4195  df-int 4232  df-iun 4276  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4489  df-eprel 4735  df-id 4739  df-po 4744  df-so 4745  df-fr 4782  df-we 4784  df-ord 4825  df-on 4826  df-lim 4827  df-suc 4828  df-xp 4949  df-rel 4950  df-cnv 4951  df-co 4952  df-dm 4953  df-rn 4954  df-res 4955  df-ima 4956  df-iota 5484  df-fun 5523  df-fn 5524  df-f 5525  df-f1 5526  df-fo 5527  df-f1o 5528  df-fv 5529  df-om 6582  df-recs 6937  df-rdg 6971  df-r1 8077  df-rank 8078
This theorem is referenced by:  hta  8210
  Copyright terms: Public domain W3C validator