MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scottex Structured version   Unicode version

Theorem scottex 8196
Description: Scott's trick collects all sets that have a certain property and are of the smallest possible rank. This theorem shows that the resulting collection, expressed as in Equation 9.3 of [Jech] p. 72, is a set. (Contributed by NM, 13-Oct-2003.)
Assertion
Ref Expression
scottex  |-  { x  e.  A  |  A. y  e.  A  ( rank `  x )  C_  ( rank `  y ) }  e.  _V
Distinct variable group:    x, y, A

Proof of Theorem scottex
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 4523 . . . 4  |-  (/)  e.  _V
2 eleq1 2523 . . . 4  |-  ( A  =  (/)  ->  ( A  e.  _V  <->  (/)  e.  _V ) )
31, 2mpbiri 233 . . 3  |-  ( A  =  (/)  ->  A  e. 
_V )
4 rabexg 4543 . . 3  |-  ( A  e.  _V  ->  { x  e.  A  |  A. y  e.  A  ( rank `  x )  C_  ( rank `  y ) }  e.  _V )
53, 4syl 16 . 2  |-  ( A  =  (/)  ->  { x  e.  A  |  A. y  e.  A  ( rank `  x )  C_  ( rank `  y ) }  e.  _V )
6 neq0 3748 . . 3  |-  ( -.  A  =  (/)  <->  E. y 
y  e.  A )
7 nfra1 2806 . . . . . 6  |-  F/ y A. y  e.  A  ( rank `  x )  C_  ( rank `  y
)
8 nfcv 2613 . . . . . 6  |-  F/_ y A
97, 8nfrab 3001 . . . . 5  |-  F/_ y { x  e.  A  |  A. y  e.  A  ( rank `  x )  C_  ( rank `  y
) }
109nfel1 2628 . . . 4  |-  F/ y { x  e.  A  |  A. y  e.  A  ( rank `  x )  C_  ( rank `  y
) }  e.  _V
11 rsp 2887 . . . . . . . 8  |-  ( A. y  e.  A  ( rank `  x )  C_  ( rank `  y )  ->  ( y  e.  A  ->  ( rank `  x
)  C_  ( rank `  y ) ) )
1211com12 31 . . . . . . 7  |-  ( y  e.  A  ->  ( A. y  e.  A  ( rank `  x )  C_  ( rank `  y
)  ->  ( rank `  x )  C_  ( rank `  y ) ) )
1312ralrimivw 2826 . . . . . 6  |-  ( y  e.  A  ->  A. x  e.  A  ( A. y  e.  A  ( rank `  x )  C_  ( rank `  y )  ->  ( rank `  x
)  C_  ( rank `  y ) ) )
14 ss2rab 3529 . . . . . 6  |-  ( { x  e.  A  |  A. y  e.  A  ( rank `  x )  C_  ( rank `  y
) }  C_  { x  e.  A  |  ( rank `  x )  C_  ( rank `  y ) } 
<-> 
A. x  e.  A  ( A. y  e.  A  ( rank `  x )  C_  ( rank `  y
)  ->  ( rank `  x )  C_  ( rank `  y ) ) )
1513, 14sylibr 212 . . . . 5  |-  ( y  e.  A  ->  { x  e.  A  |  A. y  e.  A  ( rank `  x )  C_  ( rank `  y ) }  C_  { x  e.  A  |  ( rank `  x )  C_  ( rank `  y ) } )
16 rankon 8106 . . . . . . . 8  |-  ( rank `  y )  e.  On
17 fveq2 5792 . . . . . . . . . . . 12  |-  ( x  =  w  ->  ( rank `  x )  =  ( rank `  w
) )
1817sseq1d 3484 . . . . . . . . . . 11  |-  ( x  =  w  ->  (
( rank `  x )  C_  ( rank `  y
)  <->  ( rank `  w
)  C_  ( rank `  y ) ) )
1918elrab 3217 . . . . . . . . . 10  |-  ( w  e.  { x  e.  A  |  ( rank `  x )  C_  ( rank `  y ) }  <-> 
( w  e.  A  /\  ( rank `  w
)  C_  ( rank `  y ) ) )
2019simprbi 464 . . . . . . . . 9  |-  ( w  e.  { x  e.  A  |  ( rank `  x )  C_  ( rank `  y ) }  ->  ( rank `  w
)  C_  ( rank `  y ) )
2120rgen 2892 . . . . . . . 8  |-  A. w  e.  { x  e.  A  |  ( rank `  x
)  C_  ( rank `  y ) }  ( rank `  w )  C_  ( rank `  y )
22 sseq2 3479 . . . . . . . . . 10  |-  ( z  =  ( rank `  y
)  ->  ( ( rank `  w )  C_  z 
<->  ( rank `  w
)  C_  ( rank `  y ) ) )
2322ralbidv 2841 . . . . . . . . 9  |-  ( z  =  ( rank `  y
)  ->  ( A. w  e.  { x  e.  A  |  ( rank `  x )  C_  ( rank `  y ) }  ( rank `  w
)  C_  z  <->  A. w  e.  { x  e.  A  |  ( rank `  x
)  C_  ( rank `  y ) }  ( rank `  w )  C_  ( rank `  y )
) )
2423rspcev 3172 . . . . . . . 8  |-  ( ( ( rank `  y
)  e.  On  /\  A. w  e.  { x  e.  A  |  ( rank `  x )  C_  ( rank `  y ) }  ( rank `  w
)  C_  ( rank `  y ) )  ->  E. z  e.  On  A. w  e.  { x  e.  A  |  ( rank `  x )  C_  ( rank `  y ) }  ( rank `  w
)  C_  z )
2516, 21, 24mp2an 672 . . . . . . 7  |-  E. z  e.  On  A. w  e. 
{ x  e.  A  |  ( rank `  x
)  C_  ( rank `  y ) }  ( rank `  w )  C_  z
26 bndrank 8152 . . . . . . 7  |-  ( E. z  e.  On  A. w  e.  { x  e.  A  |  ( rank `  x )  C_  ( rank `  y ) }  ( rank `  w
)  C_  z  ->  { x  e.  A  | 
( rank `  x )  C_  ( rank `  y
) }  e.  _V )
2725, 26ax-mp 5 . . . . . 6  |-  { x  e.  A  |  ( rank `  x )  C_  ( rank `  y ) }  e.  _V
2827ssex 4537 . . . . 5  |-  ( { x  e.  A  |  A. y  e.  A  ( rank `  x )  C_  ( rank `  y
) }  C_  { x  e.  A  |  ( rank `  x )  C_  ( rank `  y ) }  ->  { x  e.  A  |  A. y  e.  A  ( rank `  x )  C_  ( rank `  y ) }  e.  _V )
2915, 28syl 16 . . . 4  |-  ( y  e.  A  ->  { x  e.  A  |  A. y  e.  A  ( rank `  x )  C_  ( rank `  y ) }  e.  _V )
3010, 29exlimi 1847 . . 3  |-  ( E. y  y  e.  A  ->  { x  e.  A  |  A. y  e.  A  ( rank `  x )  C_  ( rank `  y
) }  e.  _V )
316, 30sylbi 195 . 2  |-  ( -.  A  =  (/)  ->  { x  e.  A  |  A. y  e.  A  ( rank `  x )  C_  ( rank `  y ) }  e.  _V )
325, 31pm2.61i 164 1  |-  { x  e.  A  |  A. y  e.  A  ( rank `  x )  C_  ( rank `  y ) }  e.  _V
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1370   E.wex 1587    e. wcel 1758   A.wral 2795   E.wrex 2796   {crab 2799   _Vcvv 3071    C_ wss 3429   (/)c0 3738   Oncon0 4820   ` cfv 5519   rankcrnk 8074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4504  ax-sep 4514  ax-nul 4522  ax-pow 4571  ax-pr 4632  ax-un 6475  ax-reg 7911  ax-inf2 7951
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-reu 2802  df-rab 2804  df-v 3073  df-sbc 3288  df-csb 3390  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-pss 3445  df-nul 3739  df-if 3893  df-pw 3963  df-sn 3979  df-pr 3981  df-tp 3983  df-op 3985  df-uni 4193  df-int 4230  df-iun 4274  df-br 4394  df-opab 4452  df-mpt 4453  df-tr 4487  df-eprel 4733  df-id 4737  df-po 4742  df-so 4743  df-fr 4780  df-we 4782  df-ord 4823  df-on 4824  df-lim 4825  df-suc 4826  df-xp 4947  df-rel 4948  df-cnv 4949  df-co 4950  df-dm 4951  df-rn 4952  df-res 4953  df-ima 4954  df-iota 5482  df-fun 5521  df-fn 5522  df-f 5523  df-f1 5524  df-fo 5525  df-f1o 5526  df-fv 5527  df-om 6580  df-recs 6935  df-rdg 6969  df-r1 8075  df-rank 8076
This theorem is referenced by:  scottexs  8198  cplem2  8201  kardex  8205  scottexf  29121
  Copyright terms: Public domain W3C validator