MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scott0s Structured version   Unicode version

Theorem scott0s 8318
Description: Theorem scheme version of scott0 8316. The collection of all  x of minimum rank such that 
ph ( x ) is true, is not empty iff there is an  x such that  ph ( x ) holds. (Contributed by NM, 13-Oct-2003.)
Assertion
Ref Expression
scott0s  |-  ( E. x ph  <->  { x  |  ( ph  /\  A. y ( [. y  /  x ]. ph  ->  (
rank `  x )  C_  ( rank `  y
) ) ) }  =/=  (/) )
Distinct variable groups:    x, y    ph, y
Allowed substitution hint:    ph( x)

Proof of Theorem scott0s
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 abn0 3809 . 2  |-  ( { x  |  ph }  =/=  (/)  <->  E. x ph )
2 scott0 8316 . . . 4  |-  ( { x  |  ph }  =  (/)  <->  { z  e.  {
x  |  ph }  |  A. y  e.  {
x  |  ph } 
( rank `  z )  C_  ( rank `  y
) }  =  (/) )
3 nfcv 2629 . . . . . . 7  |-  F/_ z { x  |  ph }
4 nfab1 2631 . . . . . . 7  |-  F/_ x { x  |  ph }
5 nfv 1683 . . . . . . . 8  |-  F/ x
( rank `  z )  C_  ( rank `  y
)
64, 5nfral 2853 . . . . . . 7  |-  F/ x A. y  e.  { x  |  ph }  ( rank `  z )  C_  ( rank `  y )
7 nfv 1683 . . . . . . 7  |-  F/ z A. y  e.  {
x  |  ph } 
( rank `  x )  C_  ( rank `  y
)
8 fveq2 5872 . . . . . . . . 9  |-  ( z  =  x  ->  ( rank `  z )  =  ( rank `  x
) )
98sseq1d 3536 . . . . . . . 8  |-  ( z  =  x  ->  (
( rank `  z )  C_  ( rank `  y
)  <->  ( rank `  x
)  C_  ( rank `  y ) ) )
109ralbidv 2906 . . . . . . 7  |-  ( z  =  x  ->  ( A. y  e.  { x  |  ph }  ( rank `  z )  C_  ( rank `  y )  <->  A. y  e.  { x  |  ph }  ( rank `  x
)  C_  ( rank `  y ) ) )
113, 4, 6, 7, 10cbvrab 3116 . . . . . 6  |-  { z  e.  { x  | 
ph }  |  A. y  e.  { x  |  ph }  ( rank `  z )  C_  ( rank `  y ) }  =  { x  e. 
{ x  |  ph }  |  A. y  e.  { x  |  ph }  ( rank `  x
)  C_  ( rank `  y ) }
12 df-rab 2826 . . . . . 6  |-  { x  e.  { x  |  ph }  |  A. y  e.  { x  |  ph }  ( rank `  x
)  C_  ( rank `  y ) }  =  { x  |  (
x  e.  { x  |  ph }  /\  A. y  e.  { x  |  ph }  ( rank `  x )  C_  ( rank `  y ) ) }
13 abid 2454 . . . . . . . 8  |-  ( x  e.  { x  | 
ph }  <->  ph )
14 df-ral 2822 . . . . . . . . 9  |-  ( A. y  e.  { x  |  ph }  ( rank `  x )  C_  ( rank `  y )  <->  A. y
( y  e.  {
x  |  ph }  ->  ( rank `  x
)  C_  ( rank `  y ) ) )
15 df-sbc 3337 . . . . . . . . . . 11  |-  ( [. y  /  x ]. ph  <->  y  e.  { x  |  ph }
)
1615imbi1i 325 . . . . . . . . . 10  |-  ( (
[. y  /  x ]. ph  ->  ( rank `  x )  C_  ( rank `  y ) )  <-> 
( y  e.  {
x  |  ph }  ->  ( rank `  x
)  C_  ( rank `  y ) ) )
1716albii 1620 . . . . . . . . 9  |-  ( A. y ( [. y  /  x ]. ph  ->  (
rank `  x )  C_  ( rank `  y
) )  <->  A. y
( y  e.  {
x  |  ph }  ->  ( rank `  x
)  C_  ( rank `  y ) ) )
1814, 17bitr4i 252 . . . . . . . 8  |-  ( A. y  e.  { x  |  ph }  ( rank `  x )  C_  ( rank `  y )  <->  A. y
( [. y  /  x ]. ph  ->  ( rank `  x )  C_  ( rank `  y ) ) )
1913, 18anbi12i 697 . . . . . . 7  |-  ( ( x  e.  { x  |  ph }  /\  A. y  e.  { x  |  ph }  ( rank `  x )  C_  ( rank `  y ) )  <-> 
( ph  /\  A. y
( [. y  /  x ]. ph  ->  ( rank `  x )  C_  ( rank `  y ) ) ) )
2019abbii 2601 . . . . . 6  |-  { x  |  ( x  e. 
{ x  |  ph }  /\  A. y  e. 
{ x  |  ph }  ( rank `  x
)  C_  ( rank `  y ) ) }  =  { x  |  ( ph  /\  A. y ( [. y  /  x ]. ph  ->  (
rank `  x )  C_  ( rank `  y
) ) ) }
2111, 12, 203eqtri 2500 . . . . 5  |-  { z  e.  { x  | 
ph }  |  A. y  e.  { x  |  ph }  ( rank `  z )  C_  ( rank `  y ) }  =  { x  |  ( ph  /\  A. y ( [. y  /  x ]. ph  ->  (
rank `  x )  C_  ( rank `  y
) ) ) }
2221eqeq1i 2474 . . . 4  |-  ( { z  e.  { x  |  ph }  |  A. y  e.  { x  |  ph }  ( rank `  z )  C_  ( rank `  y ) }  =  (/)  <->  { x  |  (
ph  /\  A. y
( [. y  /  x ]. ph  ->  ( rank `  x )  C_  ( rank `  y ) ) ) }  =  (/) )
232, 22bitri 249 . . 3  |-  ( { x  |  ph }  =  (/)  <->  { x  |  (
ph  /\  A. y
( [. y  /  x ]. ph  ->  ( rank `  x )  C_  ( rank `  y ) ) ) }  =  (/) )
2423necon3bii 2735 . 2  |-  ( { x  |  ph }  =/=  (/)  <->  { x  |  (
ph  /\  A. y
( [. y  /  x ]. ph  ->  ( rank `  x )  C_  ( rank `  y ) ) ) }  =/=  (/) )
251, 24bitr3i 251 1  |-  ( E. x ph  <->  { x  |  ( ph  /\  A. y ( [. y  /  x ]. ph  ->  (
rank `  x )  C_  ( rank `  y
) ) ) }  =/=  (/) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369   A.wal 1377    = wceq 1379   E.wex 1596    e. wcel 1767   {cab 2452    =/= wne 2662   A.wral 2817   {crab 2821   [.wsbc 3336    C_ wss 3481   (/)c0 3790   ` cfv 5594   rankcrnk 8193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-iin 4334  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-om 6696  df-recs 7054  df-rdg 7088  df-r1 8194  df-rank 8195
This theorem is referenced by:  hta  8327
  Copyright terms: Public domain W3C validator