MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scott0 Structured version   Unicode version

Theorem scott0 8307
Description: Scott's trick collects all sets that have a certain property and are of the smallest possible rank. This theorem shows that the resulting collection, expressed as in Equation 9.3 of [Jech] p. 72, contains at least one representative with the property, if there is one. In other words, the collection is empty iff no set has the property (i.e.  A is empty). (Contributed by NM, 15-Oct-2003.)
Assertion
Ref Expression
scott0  |-  ( A  =  (/)  <->  { x  e.  A  |  A. y  e.  A  ( rank `  x )  C_  ( rank `  y
) }  =  (/) )
Distinct variable group:    x, y, A

Proof of Theorem scott0
StepHypRef Expression
1 rabeq 3089 . . 3  |-  ( A  =  (/)  ->  { x  e.  A  |  A. y  e.  A  ( rank `  x )  C_  ( rank `  y ) }  =  { x  e.  (/)  |  A. y  e.  A  ( rank `  x )  C_  ( rank `  y ) } )
2 rab0 3792 . . 3  |-  { x  e.  (/)  |  A. y  e.  A  ( rank `  x )  C_  ( rank `  y ) }  =  (/)
31, 2syl6eq 2500 . 2  |-  ( A  =  (/)  ->  { x  e.  A  |  A. y  e.  A  ( rank `  x )  C_  ( rank `  y ) }  =  (/) )
4 n0 3780 . . . . . . . 8  |-  ( A  =/=  (/)  <->  E. x  x  e.  A )
5 nfre1 2904 . . . . . . . . 9  |-  F/ x E. x  e.  A  ( rank `  x )  =  ( rank `  x
)
6 eqid 2443 . . . . . . . . . 10  |-  ( rank `  x )  =  (
rank `  x )
7 rspe 2901 . . . . . . . . . 10  |-  ( ( x  e.  A  /\  ( rank `  x )  =  ( rank `  x
) )  ->  E. x  e.  A  ( rank `  x )  =  (
rank `  x )
)
86, 7mpan2 671 . . . . . . . . 9  |-  ( x  e.  A  ->  E. x  e.  A  ( rank `  x )  =  (
rank `  x )
)
95, 8exlimi 1898 . . . . . . . 8  |-  ( E. x  x  e.  A  ->  E. x  e.  A  ( rank `  x )  =  ( rank `  x
) )
104, 9sylbi 195 . . . . . . 7  |-  ( A  =/=  (/)  ->  E. x  e.  A  ( rank `  x )  =  (
rank `  x )
)
11 fvex 5866 . . . . . . . . . . 11  |-  ( rank `  x )  e.  _V
12 eqeq1 2447 . . . . . . . . . . . 12  |-  ( y  =  ( rank `  x
)  ->  ( y  =  ( rank `  x
)  <->  ( rank `  x
)  =  ( rank `  x ) ) )
1312anbi2d 703 . . . . . . . . . . 11  |-  ( y  =  ( rank `  x
)  ->  ( (
x  e.  A  /\  y  =  ( rank `  x ) )  <->  ( x  e.  A  /\  ( rank `  x )  =  ( rank `  x
) ) ) )
1411, 13spcev 3187 . . . . . . . . . 10  |-  ( ( x  e.  A  /\  ( rank `  x )  =  ( rank `  x
) )  ->  E. y
( x  e.  A  /\  y  =  ( rank `  x ) ) )
1514eximi 1643 . . . . . . . . 9  |-  ( E. x ( x  e.  A  /\  ( rank `  x )  =  (
rank `  x )
)  ->  E. x E. y ( x  e.  A  /\  y  =  ( rank `  x
) ) )
16 excom 1835 . . . . . . . . 9  |-  ( E. y E. x ( x  e.  A  /\  y  =  ( rank `  x ) )  <->  E. x E. y ( x  e.  A  /\  y  =  ( rank `  x
) ) )
1715, 16sylibr 212 . . . . . . . 8  |-  ( E. x ( x  e.  A  /\  ( rank `  x )  =  (
rank `  x )
)  ->  E. y E. x ( x  e.  A  /\  y  =  ( rank `  x
) ) )
18 df-rex 2799 . . . . . . . 8  |-  ( E. x  e.  A  (
rank `  x )  =  ( rank `  x
)  <->  E. x ( x  e.  A  /\  ( rank `  x )  =  ( rank `  x
) ) )
19 df-rex 2799 . . . . . . . . 9  |-  ( E. x  e.  A  y  =  ( rank `  x
)  <->  E. x ( x  e.  A  /\  y  =  ( rank `  x
) ) )
2019exbii 1654 . . . . . . . 8  |-  ( E. y E. x  e.  A  y  =  (
rank `  x )  <->  E. y E. x ( x  e.  A  /\  y  =  ( rank `  x ) ) )
2117, 18, 203imtr4i 266 . . . . . . 7  |-  ( E. x  e.  A  (
rank `  x )  =  ( rank `  x
)  ->  E. y E. x  e.  A  y  =  ( rank `  x ) )
2210, 21syl 16 . . . . . 6  |-  ( A  =/=  (/)  ->  E. y E. x  e.  A  y  =  ( rank `  x ) )
23 abn0 3790 . . . . . 6  |-  ( { y  |  E. x  e.  A  y  =  ( rank `  x ) }  =/=  (/)  <->  E. y E. x  e.  A  y  =  ( rank `  x )
)
2422, 23sylibr 212 . . . . 5  |-  ( A  =/=  (/)  ->  { y  |  E. x  e.  A  y  =  ( rank `  x ) }  =/=  (/) )
2511dfiin2 4350 . . . . . 6  |-  |^|_ x  e.  A  ( rank `  x )  =  |^| { y  |  E. x  e.  A  y  =  ( rank `  x ) }
26 rankon 8216 . . . . . . . . . 10  |-  ( rank `  x )  e.  On
27 eleq1 2515 . . . . . . . . . 10  |-  ( y  =  ( rank `  x
)  ->  ( y  e.  On  <->  ( rank `  x
)  e.  On ) )
2826, 27mpbiri 233 . . . . . . . . 9  |-  ( y  =  ( rank `  x
)  ->  y  e.  On )
2928rexlimivw 2932 . . . . . . . 8  |-  ( E. x  e.  A  y  =  ( rank `  x
)  ->  y  e.  On )
3029abssi 3560 . . . . . . 7  |-  { y  |  E. x  e.  A  y  =  (
rank `  x ) }  C_  On
31 onint 6615 . . . . . . 7  |-  ( ( { y  |  E. x  e.  A  y  =  ( rank `  x
) }  C_  On  /\ 
{ y  |  E. x  e.  A  y  =  ( rank `  x
) }  =/=  (/) )  ->  |^| { y  |  E. x  e.  A  y  =  ( rank `  x
) }  e.  {
y  |  E. x  e.  A  y  =  ( rank `  x ) } )
3230, 31mpan 670 . . . . . 6  |-  ( { y  |  E. x  e.  A  y  =  ( rank `  x ) }  =/=  (/)  ->  |^| { y  |  E. x  e.  A  y  =  (
rank `  x ) }  e.  { y  |  E. x  e.  A  y  =  ( rank `  x ) } )
3325, 32syl5eqel 2535 . . . . 5  |-  ( { y  |  E. x  e.  A  y  =  ( rank `  x ) }  =/=  (/)  ->  |^|_ x  e.  A  ( rank `  x
)  e.  { y  |  E. x  e.  A  y  =  (
rank `  x ) } )
34 nfii1 4346 . . . . . . . . 9  |-  F/_ x |^|_ x  e.  A  (
rank `  x )
3534nfeq2 2622 . . . . . . . 8  |-  F/ x  y  =  |^|_ x  e.  A  ( rank `  x
)
36 eqeq1 2447 . . . . . . . 8  |-  ( y  =  |^|_ x  e.  A  ( rank `  x )  ->  ( y  =  (
rank `  x )  <->  |^|_
x  e.  A  (
rank `  x )  =  ( rank `  x
) ) )
3735, 36rexbid 2953 . . . . . . 7  |-  ( y  =  |^|_ x  e.  A  ( rank `  x )  ->  ( E. x  e.  A  y  =  (
rank `  x )  <->  E. x  e.  A  |^|_ x  e.  A  ( rank `  x )  =  (
rank `  x )
) )
3837elabg 3233 . . . . . 6  |-  ( |^|_ x  e.  A  ( rank `  x )  e.  {
y  |  E. x  e.  A  y  =  ( rank `  x ) }  ->  ( |^|_ x  e.  A  ( rank `  x )  e.  {
y  |  E. x  e.  A  y  =  ( rank `  x ) } 
<->  E. x  e.  A  |^|_
x  e.  A  (
rank `  x )  =  ( rank `  x
) ) )
3938ibi 241 . . . . 5  |-  ( |^|_ x  e.  A  ( rank `  x )  e.  {
y  |  E. x  e.  A  y  =  ( rank `  x ) }  ->  E. x  e.  A  |^|_
x  e.  A  (
rank `  x )  =  ( rank `  x
) )
40 ssid 3508 . . . . . . . . . 10  |-  ( rank `  y )  C_  ( rank `  y )
41 fveq2 5856 . . . . . . . . . . . 12  |-  ( x  =  y  ->  ( rank `  x )  =  ( rank `  y
) )
4241sseq1d 3516 . . . . . . . . . . 11  |-  ( x  =  y  ->  (
( rank `  x )  C_  ( rank `  y
)  <->  ( rank `  y
)  C_  ( rank `  y ) ) )
4342rspcev 3196 . . . . . . . . . 10  |-  ( ( y  e.  A  /\  ( rank `  y )  C_  ( rank `  y
) )  ->  E. x  e.  A  ( rank `  x )  C_  ( rank `  y ) )
4440, 43mpan2 671 . . . . . . . . 9  |-  ( y  e.  A  ->  E. x  e.  A  ( rank `  x )  C_  ( rank `  y ) )
45 iinss 4366 . . . . . . . . 9  |-  ( E. x  e.  A  (
rank `  x )  C_  ( rank `  y
)  ->  |^|_ x  e.  A  ( rank `  x
)  C_  ( rank `  y ) )
4644, 45syl 16 . . . . . . . 8  |-  ( y  e.  A  ->  |^|_ x  e.  A  ( rank `  x )  C_  ( rank `  y ) )
47 sseq1 3510 . . . . . . . 8  |-  ( |^|_ x  e.  A  ( rank `  x )  =  (
rank `  x )  ->  ( |^|_ x  e.  A  ( rank `  x )  C_  ( rank `  y
)  <->  ( rank `  x
)  C_  ( rank `  y ) ) )
4846, 47syl5ib 219 . . . . . . 7  |-  ( |^|_ x  e.  A  ( rank `  x )  =  (
rank `  x )  ->  ( y  e.  A  ->  ( rank `  x
)  C_  ( rank `  y ) ) )
4948ralrimiv 2855 . . . . . 6  |-  ( |^|_ x  e.  A  ( rank `  x )  =  (
rank `  x )  ->  A. y  e.  A  ( rank `  x )  C_  ( rank `  y
) )
5049reximi 2911 . . . . 5  |-  ( E. x  e.  A  |^|_ x  e.  A  ( rank `  x )  =  (
rank `  x )  ->  E. x  e.  A  A. y  e.  A  ( rank `  x )  C_  ( rank `  y
) )
5124, 33, 39, 504syl 21 . . . 4  |-  ( A  =/=  (/)  ->  E. x  e.  A  A. y  e.  A  ( rank `  x )  C_  ( rank `  y ) )
52 rabn0 3791 . . . 4  |-  ( { x  e.  A  |  A. y  e.  A  ( rank `  x )  C_  ( rank `  y
) }  =/=  (/)  <->  E. x  e.  A  A. y  e.  A  ( rank `  x )  C_  ( rank `  y ) )
5351, 52sylibr 212 . . 3  |-  ( A  =/=  (/)  ->  { x  e.  A  |  A. y  e.  A  ( rank `  x )  C_  ( rank `  y ) }  =/=  (/) )
5453necon4i 2687 . 2  |-  ( { x  e.  A  |  A. y  e.  A  ( rank `  x )  C_  ( rank `  y
) }  =  (/)  ->  A  =  (/) )
553, 54impbii 188 1  |-  ( A  =  (/)  <->  { x  e.  A  |  A. y  e.  A  ( rank `  x )  C_  ( rank `  y
) }  =  (/) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    = wceq 1383   E.wex 1599    e. wcel 1804   {cab 2428    =/= wne 2638   A.wral 2793   E.wrex 2794   {crab 2797    C_ wss 3461   (/)c0 3770   |^|cint 4271   |^|_ciin 4316   Oncon0 4868   ` cfv 5578   rankcrnk 8184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-ral 2798  df-rex 2799  df-reu 2800  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-iin 4318  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-om 6686  df-recs 7044  df-rdg 7078  df-r1 8185  df-rank 8186
This theorem is referenced by:  scott0s  8309  cplem1  8310  karden  8316  scott0f  30553
  Copyright terms: Public domain W3C validator