MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scott0 Structured version   Unicode version

Theorem scott0 8217
Description: Scott's trick collects all sets that have a certain property and are of the smallest possible rank. This theorem shows that the resulting collection, expressed as in Equation 9.3 of [Jech] p. 72, contains at least one representative with the property, if there is one. In other words, the collection is empty iff no set has the property (i.e.  A is empty). (Contributed by NM, 15-Oct-2003.)
Assertion
Ref Expression
scott0  |-  ( A  =  (/)  <->  { x  e.  A  |  A. y  e.  A  ( rank `  x )  C_  ( rank `  y
) }  =  (/) )
Distinct variable group:    x, y, A

Proof of Theorem scott0
StepHypRef Expression
1 rabeq 3028 . . 3  |-  ( A  =  (/)  ->  { x  e.  A  |  A. y  e.  A  ( rank `  x )  C_  ( rank `  y ) }  =  { x  e.  (/)  |  A. y  e.  A  ( rank `  x )  C_  ( rank `  y ) } )
2 rab0 3733 . . 3  |-  { x  e.  (/)  |  A. y  e.  A  ( rank `  x )  C_  ( rank `  y ) }  =  (/)
31, 2syl6eq 2439 . 2  |-  ( A  =  (/)  ->  { x  e.  A  |  A. y  e.  A  ( rank `  x )  C_  ( rank `  y ) }  =  (/) )
4 n0 3721 . . . . . . . 8  |-  ( A  =/=  (/)  <->  E. x  x  e.  A )
5 nfre1 2843 . . . . . . . . 9  |-  F/ x E. x  e.  A  ( rank `  x )  =  ( rank `  x
)
6 eqid 2382 . . . . . . . . . 10  |-  ( rank `  x )  =  (
rank `  x )
7 rspe 2840 . . . . . . . . . 10  |-  ( ( x  e.  A  /\  ( rank `  x )  =  ( rank `  x
) )  ->  E. x  e.  A  ( rank `  x )  =  (
rank `  x )
)
86, 7mpan2 669 . . . . . . . . 9  |-  ( x  e.  A  ->  E. x  e.  A  ( rank `  x )  =  (
rank `  x )
)
95, 8exlimi 1920 . . . . . . . 8  |-  ( E. x  x  e.  A  ->  E. x  e.  A  ( rank `  x )  =  ( rank `  x
) )
104, 9sylbi 195 . . . . . . 7  |-  ( A  =/=  (/)  ->  E. x  e.  A  ( rank `  x )  =  (
rank `  x )
)
11 fvex 5784 . . . . . . . . . . 11  |-  ( rank `  x )  e.  _V
12 eqeq1 2386 . . . . . . . . . . . 12  |-  ( y  =  ( rank `  x
)  ->  ( y  =  ( rank `  x
)  <->  ( rank `  x
)  =  ( rank `  x ) ) )
1312anbi2d 701 . . . . . . . . . . 11  |-  ( y  =  ( rank `  x
)  ->  ( (
x  e.  A  /\  y  =  ( rank `  x ) )  <->  ( x  e.  A  /\  ( rank `  x )  =  ( rank `  x
) ) ) )
1411, 13spcev 3126 . . . . . . . . . 10  |-  ( ( x  e.  A  /\  ( rank `  x )  =  ( rank `  x
) )  ->  E. y
( x  e.  A  /\  y  =  ( rank `  x ) ) )
1514eximi 1664 . . . . . . . . 9  |-  ( E. x ( x  e.  A  /\  ( rank `  x )  =  (
rank `  x )
)  ->  E. x E. y ( x  e.  A  /\  y  =  ( rank `  x
) ) )
16 excom 1857 . . . . . . . . 9  |-  ( E. y E. x ( x  e.  A  /\  y  =  ( rank `  x ) )  <->  E. x E. y ( x  e.  A  /\  y  =  ( rank `  x
) ) )
1715, 16sylibr 212 . . . . . . . 8  |-  ( E. x ( x  e.  A  /\  ( rank `  x )  =  (
rank `  x )
)  ->  E. y E. x ( x  e.  A  /\  y  =  ( rank `  x
) ) )
18 df-rex 2738 . . . . . . . 8  |-  ( E. x  e.  A  (
rank `  x )  =  ( rank `  x
)  <->  E. x ( x  e.  A  /\  ( rank `  x )  =  ( rank `  x
) ) )
19 df-rex 2738 . . . . . . . . 9  |-  ( E. x  e.  A  y  =  ( rank `  x
)  <->  E. x ( x  e.  A  /\  y  =  ( rank `  x
) ) )
2019exbii 1675 . . . . . . . 8  |-  ( E. y E. x  e.  A  y  =  (
rank `  x )  <->  E. y E. x ( x  e.  A  /\  y  =  ( rank `  x ) ) )
2117, 18, 203imtr4i 266 . . . . . . 7  |-  ( E. x  e.  A  (
rank `  x )  =  ( rank `  x
)  ->  E. y E. x  e.  A  y  =  ( rank `  x ) )
2210, 21syl 16 . . . . . 6  |-  ( A  =/=  (/)  ->  E. y E. x  e.  A  y  =  ( rank `  x ) )
23 abn0 3731 . . . . . 6  |-  ( { y  |  E. x  e.  A  y  =  ( rank `  x ) }  =/=  (/)  <->  E. y E. x  e.  A  y  =  ( rank `  x )
)
2422, 23sylibr 212 . . . . 5  |-  ( A  =/=  (/)  ->  { y  |  E. x  e.  A  y  =  ( rank `  x ) }  =/=  (/) )
2511dfiin2 4278 . . . . . 6  |-  |^|_ x  e.  A  ( rank `  x )  =  |^| { y  |  E. x  e.  A  y  =  ( rank `  x ) }
26 rankon 8126 . . . . . . . . . 10  |-  ( rank `  x )  e.  On
27 eleq1 2454 . . . . . . . . . 10  |-  ( y  =  ( rank `  x
)  ->  ( y  e.  On  <->  ( rank `  x
)  e.  On ) )
2826, 27mpbiri 233 . . . . . . . . 9  |-  ( y  =  ( rank `  x
)  ->  y  e.  On )
2928rexlimivw 2871 . . . . . . . 8  |-  ( E. x  e.  A  y  =  ( rank `  x
)  ->  y  e.  On )
3029abssi 3489 . . . . . . 7  |-  { y  |  E. x  e.  A  y  =  (
rank `  x ) }  C_  On
31 onint 6529 . . . . . . 7  |-  ( ( { y  |  E. x  e.  A  y  =  ( rank `  x
) }  C_  On  /\ 
{ y  |  E. x  e.  A  y  =  ( rank `  x
) }  =/=  (/) )  ->  |^| { y  |  E. x  e.  A  y  =  ( rank `  x
) }  e.  {
y  |  E. x  e.  A  y  =  ( rank `  x ) } )
3230, 31mpan 668 . . . . . 6  |-  ( { y  |  E. x  e.  A  y  =  ( rank `  x ) }  =/=  (/)  ->  |^| { y  |  E. x  e.  A  y  =  (
rank `  x ) }  e.  { y  |  E. x  e.  A  y  =  ( rank `  x ) } )
3325, 32syl5eqel 2474 . . . . 5  |-  ( { y  |  E. x  e.  A  y  =  ( rank `  x ) }  =/=  (/)  ->  |^|_ x  e.  A  ( rank `  x
)  e.  { y  |  E. x  e.  A  y  =  (
rank `  x ) } )
34 nfii1 4274 . . . . . . . . 9  |-  F/_ x |^|_ x  e.  A  (
rank `  x )
3534nfeq2 2561 . . . . . . . 8  |-  F/ x  y  =  |^|_ x  e.  A  ( rank `  x
)
36 eqeq1 2386 . . . . . . . 8  |-  ( y  =  |^|_ x  e.  A  ( rank `  x )  ->  ( y  =  (
rank `  x )  <->  |^|_
x  e.  A  (
rank `  x )  =  ( rank `  x
) ) )
3735, 36rexbid 2892 . . . . . . 7  |-  ( y  =  |^|_ x  e.  A  ( rank `  x )  ->  ( E. x  e.  A  y  =  (
rank `  x )  <->  E. x  e.  A  |^|_ x  e.  A  ( rank `  x )  =  (
rank `  x )
) )
3837elabg 3172 . . . . . 6  |-  ( |^|_ x  e.  A  ( rank `  x )  e.  {
y  |  E. x  e.  A  y  =  ( rank `  x ) }  ->  ( |^|_ x  e.  A  ( rank `  x )  e.  {
y  |  E. x  e.  A  y  =  ( rank `  x ) } 
<->  E. x  e.  A  |^|_
x  e.  A  (
rank `  x )  =  ( rank `  x
) ) )
3938ibi 241 . . . . 5  |-  ( |^|_ x  e.  A  ( rank `  x )  e.  {
y  |  E. x  e.  A  y  =  ( rank `  x ) }  ->  E. x  e.  A  |^|_
x  e.  A  (
rank `  x )  =  ( rank `  x
) )
40 ssid 3436 . . . . . . . . . 10  |-  ( rank `  y )  C_  ( rank `  y )
41 fveq2 5774 . . . . . . . . . . . 12  |-  ( x  =  y  ->  ( rank `  x )  =  ( rank `  y
) )
4241sseq1d 3444 . . . . . . . . . . 11  |-  ( x  =  y  ->  (
( rank `  x )  C_  ( rank `  y
)  <->  ( rank `  y
)  C_  ( rank `  y ) ) )
4342rspcev 3135 . . . . . . . . . 10  |-  ( ( y  e.  A  /\  ( rank `  y )  C_  ( rank `  y
) )  ->  E. x  e.  A  ( rank `  x )  C_  ( rank `  y ) )
4440, 43mpan2 669 . . . . . . . . 9  |-  ( y  e.  A  ->  E. x  e.  A  ( rank `  x )  C_  ( rank `  y ) )
45 iinss 4294 . . . . . . . . 9  |-  ( E. x  e.  A  (
rank `  x )  C_  ( rank `  y
)  ->  |^|_ x  e.  A  ( rank `  x
)  C_  ( rank `  y ) )
4644, 45syl 16 . . . . . . . 8  |-  ( y  e.  A  ->  |^|_ x  e.  A  ( rank `  x )  C_  ( rank `  y ) )
47 sseq1 3438 . . . . . . . 8  |-  ( |^|_ x  e.  A  ( rank `  x )  =  (
rank `  x )  ->  ( |^|_ x  e.  A  ( rank `  x )  C_  ( rank `  y
)  <->  ( rank `  x
)  C_  ( rank `  y ) ) )
4846, 47syl5ib 219 . . . . . . 7  |-  ( |^|_ x  e.  A  ( rank `  x )  =  (
rank `  x )  ->  ( y  e.  A  ->  ( rank `  x
)  C_  ( rank `  y ) ) )
4948ralrimiv 2794 . . . . . 6  |-  ( |^|_ x  e.  A  ( rank `  x )  =  (
rank `  x )  ->  A. y  e.  A  ( rank `  x )  C_  ( rank `  y
) )
5049reximi 2850 . . . . 5  |-  ( E. x  e.  A  |^|_ x  e.  A  ( rank `  x )  =  (
rank `  x )  ->  E. x  e.  A  A. y  e.  A  ( rank `  x )  C_  ( rank `  y
) )
5124, 33, 39, 504syl 21 . . . 4  |-  ( A  =/=  (/)  ->  E. x  e.  A  A. y  e.  A  ( rank `  x )  C_  ( rank `  y ) )
52 rabn0 3732 . . . 4  |-  ( { x  e.  A  |  A. y  e.  A  ( rank `  x )  C_  ( rank `  y
) }  =/=  (/)  <->  E. x  e.  A  A. y  e.  A  ( rank `  x )  C_  ( rank `  y ) )
5351, 52sylibr 212 . . 3  |-  ( A  =/=  (/)  ->  { x  e.  A  |  A. y  e.  A  ( rank `  x )  C_  ( rank `  y ) }  =/=  (/) )
5453necon4i 2626 . 2  |-  ( { x  e.  A  |  A. y  e.  A  ( rank `  x )  C_  ( rank `  y
) }  =  (/)  ->  A  =  (/) )
553, 54impbii 188 1  |-  ( A  =  (/)  <->  { x  e.  A  |  A. y  e.  A  ( rank `  x )  C_  ( rank `  y
) }  =  (/) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 367    = wceq 1399   E.wex 1620    e. wcel 1826   {cab 2367    =/= wne 2577   A.wral 2732   E.wrex 2733   {crab 2736    C_ wss 3389   (/)c0 3711   |^|cint 4199   |^|_ciin 4244   Oncon0 4792   ` cfv 5496   rankcrnk 8094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601  ax-un 6491
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1402  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-ral 2737  df-rex 2738  df-reu 2739  df-rab 2741  df-v 3036  df-sbc 3253  df-csb 3349  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-pss 3405  df-nul 3712  df-if 3858  df-pw 3929  df-sn 3945  df-pr 3947  df-tp 3949  df-op 3951  df-uni 4164  df-int 4200  df-iun 4245  df-iin 4246  df-br 4368  df-opab 4426  df-mpt 4427  df-tr 4461  df-eprel 4705  df-id 4709  df-po 4714  df-so 4715  df-fr 4752  df-we 4754  df-ord 4795  df-on 4796  df-lim 4797  df-suc 4798  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-f1 5501  df-fo 5502  df-f1o 5503  df-fv 5504  df-om 6600  df-recs 6960  df-rdg 6994  df-r1 8095  df-rank 8096
This theorem is referenced by:  scott0s  8219  cplem1  8220  karden  8226  scott0f  30743
  Copyright terms: Public domain W3C validator