Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sconpi1 Structured version   Unicode version

Theorem sconpi1 27042
Description: A path-connected topological space is simply connected iff its fundamental group is trivial. (Contributed by Mario Carneiro, 12-Feb-2015.)
Hypothesis
Ref Expression
sconpi1.1  |-  X  = 
U. J
Assertion
Ref Expression
sconpi1  |-  ( ( J  e. PCon  /\  Y  e.  X )  ->  ( J  e. SCon  <->  ( Base `  ( J  pi1  Y ) )  ~~  1o ) )

Proof of Theorem sconpi1
Dummy variables  f  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scontop 27031 . . . . . . . . 9  |-  ( J  e. SCon  ->  J  e.  Top )
21adantl 463 . . . . . . . 8  |-  ( ( Y  e.  X  /\  J  e. SCon )  ->  J  e.  Top )
3 simpl 454 . . . . . . . 8  |-  ( ( Y  e.  X  /\  J  e. SCon )  ->  Y  e.  X )
4 eqid 2441 . . . . . . . . 9  |-  ( J  pi1  Y )  =  ( J  pi1  Y )
5 eqid 2441 . . . . . . . . 9  |-  ( Base `  ( J  pi1  Y ) )  =  ( Base `  ( J  pi1  Y ) )
6 simpl 454 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  Y  e.  X )  ->  J  e.  Top )
7 sconpi1.1 . . . . . . . . . . 11  |-  X  = 
U. J
87toptopon 18438 . . . . . . . . . 10  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
96, 8sylib 196 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  Y  e.  X )  ->  J  e.  (TopOn `  X ) )
10 simpr 458 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  Y  e.  X )  ->  Y  e.  X )
114, 5, 9, 10elpi1 20517 . . . . . . . 8  |-  ( ( J  e.  Top  /\  Y  e.  X )  ->  ( x  e.  (
Base `  ( J  pi1  Y )
)  <->  E. f  e.  ( II  Cn  J ) ( ( ( f `
 0 )  =  Y  /\  ( f `
 1 )  =  Y )  /\  x  =  [ f ] ( 
~=ph  `  J ) ) ) )
122, 3, 11syl2anc 656 . . . . . . 7  |-  ( ( Y  e.  X  /\  J  e. SCon )  ->  ( x  e.  ( Base `  ( J  pi1  Y ) )  <->  E. f  e.  ( II  Cn  J
) ( ( ( f `  0 )  =  Y  /\  (
f `  1 )  =  Y )  /\  x  =  [ f ] ( 
~=ph  `  J ) ) ) )
13 phtpcer 20467 . . . . . . . . . . . . 13  |-  (  ~=ph  `  J )  Er  (
II  Cn  J )
1413a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ( Y  e.  X  /\  J  e. SCon
)  /\  f  e.  ( II  Cn  J
) )  /\  (
( f `  0
)  =  Y  /\  ( f `  1
)  =  Y ) )  ->  (  ~=ph  `  J )  Er  (
II  Cn  J )
)
15 simpllr 753 . . . . . . . . . . . . . 14  |-  ( ( ( ( Y  e.  X  /\  J  e. SCon
)  /\  f  e.  ( II  Cn  J
) )  /\  (
( f `  0
)  =  Y  /\  ( f `  1
)  =  Y ) )  ->  J  e. SCon )
16 simplr 749 . . . . . . . . . . . . . 14  |-  ( ( ( ( Y  e.  X  /\  J  e. SCon
)  /\  f  e.  ( II  Cn  J
) )  /\  (
( f `  0
)  =  Y  /\  ( f `  1
)  =  Y ) )  ->  f  e.  ( II  Cn  J
) )
17 simprl 750 . . . . . . . . . . . . . . 15  |-  ( ( ( ( Y  e.  X  /\  J  e. SCon
)  /\  f  e.  ( II  Cn  J
) )  /\  (
( f `  0
)  =  Y  /\  ( f `  1
)  =  Y ) )  ->  ( f `  0 )  =  Y )
18 simprr 751 . . . . . . . . . . . . . . 15  |-  ( ( ( ( Y  e.  X  /\  J  e. SCon
)  /\  f  e.  ( II  Cn  J
) )  /\  (
( f `  0
)  =  Y  /\  ( f `  1
)  =  Y ) )  ->  ( f `  1 )  =  Y )
1917, 18eqtr4d 2476 . . . . . . . . . . . . . 14  |-  ( ( ( ( Y  e.  X  /\  J  e. SCon
)  /\  f  e.  ( II  Cn  J
) )  /\  (
( f `  0
)  =  Y  /\  ( f `  1
)  =  Y ) )  ->  ( f `  0 )  =  ( f `  1
) )
20 sconpht 27032 . . . . . . . . . . . . . 14  |-  ( ( J  e. SCon  /\  f  e.  ( II  Cn  J
)  /\  ( f `  0 )  =  ( f `  1
) )  ->  f
(  ~=ph  `  J )
( ( 0 [,] 1 )  X.  {
( f `  0
) } ) )
2115, 16, 19, 20syl3anc 1213 . . . . . . . . . . . . 13  |-  ( ( ( ( Y  e.  X  /\  J  e. SCon
)  /\  f  e.  ( II  Cn  J
) )  /\  (
( f `  0
)  =  Y  /\  ( f `  1
)  =  Y ) )  ->  f (  ~=ph  `  J ) ( ( 0 [,] 1 )  X.  { ( f `
 0 ) } ) )
2217sneqd 3886 . . . . . . . . . . . . . 14  |-  ( ( ( ( Y  e.  X  /\  J  e. SCon
)  /\  f  e.  ( II  Cn  J
) )  /\  (
( f `  0
)  =  Y  /\  ( f `  1
)  =  Y ) )  ->  { (
f `  0 ) }  =  { Y } )
2322xpeq2d 4860 . . . . . . . . . . . . 13  |-  ( ( ( ( Y  e.  X  /\  J  e. SCon
)  /\  f  e.  ( II  Cn  J
) )  /\  (
( f `  0
)  =  Y  /\  ( f `  1
)  =  Y ) )  ->  ( (
0 [,] 1 )  X.  { ( f `
 0 ) } )  =  ( ( 0 [,] 1 )  X.  { Y }
) )
2421, 23breqtrd 4313 . . . . . . . . . . . 12  |-  ( ( ( ( Y  e.  X  /\  J  e. SCon
)  /\  f  e.  ( II  Cn  J
) )  /\  (
( f `  0
)  =  Y  /\  ( f `  1
)  =  Y ) )  ->  f (  ~=ph  `  J ) ( ( 0 [,] 1 )  X.  { Y }
) )
2514, 24erthi 7143 . . . . . . . . . . 11  |-  ( ( ( ( Y  e.  X  /\  J  e. SCon
)  /\  f  e.  ( II  Cn  J
) )  /\  (
( f `  0
)  =  Y  /\  ( f `  1
)  =  Y ) )  ->  [ f ] (  ~=ph  `  J
)  =  [ ( ( 0 [,] 1
)  X.  { Y } ) ] ( 
~=ph  `  J ) )
262, 8sylib 196 . . . . . . . . . . . . 13  |-  ( ( Y  e.  X  /\  J  e. SCon )  ->  J  e.  (TopOn `  X
) )
27 eqid 2441 . . . . . . . . . . . . . 14  |-  ( ( 0 [,] 1 )  X.  { Y }
)  =  ( ( 0 [,] 1 )  X.  { Y }
)
284, 27pi1id 20523 . . . . . . . . . . . . 13  |-  ( ( J  e.  (TopOn `  X )  /\  Y  e.  X )  ->  [ ( ( 0 [,] 1
)  X.  { Y } ) ] ( 
~=ph  `  J )  =  ( 0g `  ( J  pi1  Y ) ) )
2926, 3, 28syl2anc 656 . . . . . . . . . . . 12  |-  ( ( Y  e.  X  /\  J  e. SCon )  ->  [ ( ( 0 [,] 1 )  X.  { Y } ) ] ( 
~=ph  `  J )  =  ( 0g `  ( J  pi1  Y ) ) )
3029ad2antrr 720 . . . . . . . . . . 11  |-  ( ( ( ( Y  e.  X  /\  J  e. SCon
)  /\  f  e.  ( II  Cn  J
) )  /\  (
( f `  0
)  =  Y  /\  ( f `  1
)  =  Y ) )  ->  [ (
( 0 [,] 1
)  X.  { Y } ) ] ( 
~=ph  `  J )  =  ( 0g `  ( J  pi1  Y ) ) )
3125, 30eqtrd 2473 . . . . . . . . . 10  |-  ( ( ( ( Y  e.  X  /\  J  e. SCon
)  /\  f  e.  ( II  Cn  J
) )  /\  (
( f `  0
)  =  Y  /\  ( f `  1
)  =  Y ) )  ->  [ f ] (  ~=ph  `  J
)  =  ( 0g
`  ( J  pi1  Y ) ) )
32 elsn 3888 . . . . . . . . . . 11  |-  ( x  e.  { ( 0g
`  ( J  pi1  Y ) ) }  <->  x  =  ( 0g `  ( J  pi1  Y ) ) )
33 eqeq1 2447 . . . . . . . . . . 11  |-  ( x  =  [ f ] (  ~=ph  `  J )  ->  ( x  =  ( 0g `  ( J  pi1  Y ) )  <->  [ f ] ( 
~=ph  `  J )  =  ( 0g `  ( J  pi1  Y ) ) ) )
3432, 33syl5bb 257 . . . . . . . . . 10  |-  ( x  =  [ f ] (  ~=ph  `  J )  ->  ( x  e. 
{ ( 0g `  ( J  pi1  Y ) ) }  <->  [ f ] ( 
~=ph  `  J )  =  ( 0g `  ( J  pi1  Y ) ) ) )
3531, 34syl5ibrcom 222 . . . . . . . . 9  |-  ( ( ( ( Y  e.  X  /\  J  e. SCon
)  /\  f  e.  ( II  Cn  J
) )  /\  (
( f `  0
)  =  Y  /\  ( f `  1
)  =  Y ) )  ->  ( x  =  [ f ] ( 
~=ph  `  J )  ->  x  e.  { ( 0g `  ( J  pi1  Y ) ) } ) )
3635expimpd 600 . . . . . . . 8  |-  ( ( ( Y  e.  X  /\  J  e. SCon )  /\  f  e.  ( II  Cn  J ) )  -> 
( ( ( ( f `  0 )  =  Y  /\  (
f `  1 )  =  Y )  /\  x  =  [ f ] ( 
~=ph  `  J ) )  ->  x  e.  {
( 0g `  ( J  pi1  Y ) ) } ) )
3736rexlimdva 2839 . . . . . . 7  |-  ( ( Y  e.  X  /\  J  e. SCon )  ->  ( E. f  e.  ( II  Cn  J ) ( ( ( f `
 0 )  =  Y  /\  ( f `
 1 )  =  Y )  /\  x  =  [ f ] ( 
~=ph  `  J ) )  ->  x  e.  {
( 0g `  ( J  pi1  Y ) ) } ) )
3812, 37sylbid 215 . . . . . 6  |-  ( ( Y  e.  X  /\  J  e. SCon )  ->  ( x  e.  ( Base `  ( J  pi1  Y ) )  ->  x  e.  { ( 0g `  ( J  pi1  Y ) ) } ) )
3938ssrdv 3359 . . . . 5  |-  ( ( Y  e.  X  /\  J  e. SCon )  ->  (
Base `  ( J  pi1  Y )
)  C_  { ( 0g `  ( J  pi1  Y ) ) } )
404pi1grp 20522 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  Y  e.  X )  ->  ( J  pi1  Y )  e.  Grp )
4126, 3, 40syl2anc 656 . . . . . . 7  |-  ( ( Y  e.  X  /\  J  e. SCon )  ->  ( J  pi1  Y )  e.  Grp )
42 eqid 2441 . . . . . . . 8  |-  ( 0g
`  ( J  pi1  Y ) )  =  ( 0g `  ( J  pi1  Y ) )
435, 42grpidcl 15559 . . . . . . 7  |-  ( ( J  pi1  Y )  e.  Grp  ->  ( 0g `  ( J  pi1  Y ) )  e.  ( Base `  ( J  pi1  Y ) ) )
4441, 43syl 16 . . . . . 6  |-  ( ( Y  e.  X  /\  J  e. SCon )  ->  ( 0g `  ( J  pi1  Y ) )  e.  ( Base `  ( J  pi1  Y ) ) )
4544snssd 4015 . . . . 5  |-  ( ( Y  e.  X  /\  J  e. SCon )  ->  { ( 0g `  ( J  pi1  Y ) ) }  C_  ( Base `  ( J  pi1  Y ) ) )
4639, 45eqssd 3370 . . . 4  |-  ( ( Y  e.  X  /\  J  e. SCon )  ->  (
Base `  ( J  pi1  Y )
)  =  { ( 0g `  ( J  pi1  Y ) ) } )
47 fvex 5698 . . . . 5  |-  ( 0g
`  ( J  pi1  Y ) )  e.  _V
4847ensn1 7369 . . . 4  |-  { ( 0g `  ( J  pi1  Y ) ) }  ~~  1o
4946, 48syl6eqbr 4326 . . 3  |-  ( ( Y  e.  X  /\  J  e. SCon )  ->  (
Base `  ( J  pi1  Y )
)  ~~  1o )
5049adantll 708 . 2  |-  ( ( ( J  e. PCon  /\  Y  e.  X )  /\  J  e. SCon )  -> 
( Base `  ( J  pi1  Y )
)  ~~  1o )
51 simpll 748 . . 3  |-  ( ( ( J  e. PCon  /\  Y  e.  X )  /\  ( Base `  ( J  pi1  Y ) )  ~~  1o )  ->  J  e. PCon )
52 eqid 2441 . . . . . . . . 9  |-  ( J  pi1  ( f `
 0 ) )  =  ( J  pi1  ( f ` 
0 ) )
53 eqid 2441 . . . . . . . . 9  |-  ( Base `  ( J  pi1 
( f `  0
) ) )  =  ( Base `  ( J  pi1  ( f `
 0 ) ) )
54 simplll 752 . . . . . . . . . . 11  |-  ( ( ( ( J  e. PCon  /\  Y  e.  X
)  /\  ( Base `  ( J  pi1  Y ) )  ~~  1o )  /\  (
f  e.  ( II 
Cn  J )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  J  e. PCon )
55 pcontop 27028 . . . . . . . . . . 11  |-  ( J  e. PCon  ->  J  e.  Top )
5654, 55syl 16 . . . . . . . . . 10  |-  ( ( ( ( J  e. PCon  /\  Y  e.  X
)  /\  ( Base `  ( J  pi1  Y ) )  ~~  1o )  /\  (
f  e.  ( II 
Cn  J )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  J  e.  Top )
5756, 8sylib 196 . . . . . . . . 9  |-  ( ( ( ( J  e. PCon  /\  Y  e.  X
)  /\  ( Base `  ( J  pi1  Y ) )  ~~  1o )  /\  (
f  e.  ( II 
Cn  J )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  J  e.  (TopOn `  X ) )
58 simprl 750 . . . . . . . . . . 11  |-  ( ( ( ( J  e. PCon  /\  Y  e.  X
)  /\  ( Base `  ( J  pi1  Y ) )  ~~  1o )  /\  (
f  e.  ( II 
Cn  J )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  f  e.  ( II  Cn  J
) )
59 iiuni 20357 . . . . . . . . . . . 12  |-  ( 0 [,] 1 )  = 
U. II
6059, 7cnf 18750 . . . . . . . . . . 11  |-  ( f  e.  ( II  Cn  J )  ->  f : ( 0 [,] 1 ) --> X )
6158, 60syl 16 . . . . . . . . . 10  |-  ( ( ( ( J  e. PCon  /\  Y  e.  X
)  /\  ( Base `  ( J  pi1  Y ) )  ~~  1o )  /\  (
f  e.  ( II 
Cn  J )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  f :
( 0 [,] 1
) --> X )
62 0elunit 11399 . . . . . . . . . 10  |-  0  e.  ( 0 [,] 1
)
63 ffvelrn 5838 . . . . . . . . . 10  |-  ( ( f : ( 0 [,] 1 ) --> X  /\  0  e.  ( 0 [,] 1 ) )  ->  ( f `  0 )  e.  X )
6461, 62, 63sylancl 657 . . . . . . . . 9  |-  ( ( ( ( J  e. PCon  /\  Y  e.  X
)  /\  ( Base `  ( J  pi1  Y ) )  ~~  1o )  /\  (
f  e.  ( II 
Cn  J )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  ( f `  0 )  e.  X )
65 eqidd 2442 . . . . . . . . 9  |-  ( ( ( ( J  e. PCon  /\  Y  e.  X
)  /\  ( Base `  ( J  pi1  Y ) )  ~~  1o )  /\  (
f  e.  ( II 
Cn  J )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  ( f `  0 )  =  ( f `  0
) )
66 simprr 751 . . . . . . . . . 10  |-  ( ( ( ( J  e. PCon  /\  Y  e.  X
)  /\  ( Base `  ( J  pi1  Y ) )  ~~  1o )  /\  (
f  e.  ( II 
Cn  J )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  ( f `  0 )  =  ( f `  1
) )
6766eqcomd 2446 . . . . . . . . 9  |-  ( ( ( ( J  e. PCon  /\  Y  e.  X
)  /\  ( Base `  ( J  pi1  Y ) )  ~~  1o )  /\  (
f  e.  ( II 
Cn  J )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  ( f `  1 )  =  ( f `  0
) )
6852, 53, 57, 64, 58, 65, 67elpi1i 20518 . . . . . . . 8  |-  ( ( ( ( J  e. PCon  /\  Y  e.  X
)  /\  ( Base `  ( J  pi1  Y ) )  ~~  1o )  /\  (
f  e.  ( II 
Cn  J )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  [ f ] (  ~=ph  `  J
)  e.  ( Base `  ( J  pi1 
( f `  0
) ) ) )
69 eqid 2441 . . . . . . . . . . . . 13  |-  ( ( 0 [,] 1 )  X.  { ( f `
 0 ) } )  =  ( ( 0 [,] 1 )  X.  { ( f `
 0 ) } )
7069pcoptcl 20493 . . . . . . . . . . . 12  |-  ( ( J  e.  (TopOn `  X )  /\  (
f `  0 )  e.  X )  ->  (
( ( 0 [,] 1 )  X.  {
( f `  0
) } )  e.  ( II  Cn  J
)  /\  ( (
( 0 [,] 1
)  X.  { ( f `  0 ) } ) `  0
)  =  ( f `
 0 )  /\  ( ( ( 0 [,] 1 )  X. 
{ ( f ` 
0 ) } ) `
 1 )  =  ( f `  0
) ) )
7157, 64, 70syl2anc 656 . . . . . . . . . . 11  |-  ( ( ( ( J  e. PCon  /\  Y  e.  X
)  /\  ( Base `  ( J  pi1  Y ) )  ~~  1o )  /\  (
f  e.  ( II 
Cn  J )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  ( (
( 0 [,] 1
)  X.  { ( f `  0 ) } )  e.  ( II  Cn  J )  /\  ( ( ( 0 [,] 1 )  X.  { ( f `
 0 ) } ) `  0 )  =  ( f ` 
0 )  /\  (
( ( 0 [,] 1 )  X.  {
( f `  0
) } ) ` 
1 )  =  ( f `  0 ) ) )
7271simp1d 995 . . . . . . . . . 10  |-  ( ( ( ( J  e. PCon  /\  Y  e.  X
)  /\  ( Base `  ( J  pi1  Y ) )  ~~  1o )  /\  (
f  e.  ( II 
Cn  J )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  ( (
0 [,] 1 )  X.  { ( f `
 0 ) } )  e.  ( II 
Cn  J ) )
7371simp2d 996 . . . . . . . . . 10  |-  ( ( ( ( J  e. PCon  /\  Y  e.  X
)  /\  ( Base `  ( J  pi1  Y ) )  ~~  1o )  /\  (
f  e.  ( II 
Cn  J )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  ( (
( 0 [,] 1
)  X.  { ( f `  0 ) } ) `  0
)  =  ( f `
 0 ) )
7471simp3d 997 . . . . . . . . . 10  |-  ( ( ( ( J  e. PCon  /\  Y  e.  X
)  /\  ( Base `  ( J  pi1  Y ) )  ~~  1o )  /\  (
f  e.  ( II 
Cn  J )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  ( (
( 0 [,] 1
)  X.  { ( f `  0 ) } ) `  1
)  =  ( f `
 0 ) )
7552, 53, 57, 64, 72, 73, 74elpi1i 20518 . . . . . . . . 9  |-  ( ( ( ( J  e. PCon  /\  Y  e.  X
)  /\  ( Base `  ( J  pi1  Y ) )  ~~  1o )  /\  (
f  e.  ( II 
Cn  J )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  [ (
( 0 [,] 1
)  X.  { ( f `  0 ) } ) ] ( 
~=ph  `  J )  e.  ( Base `  ( J  pi1  ( f `
 0 ) ) ) )
76 simpllr 753 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. PCon  /\  Y  e.  X
)  /\  ( Base `  ( J  pi1  Y ) )  ~~  1o )  /\  (
f  e.  ( II 
Cn  J )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  Y  e.  X )
777, 52, 4, 53, 5pconpi1 27040 . . . . . . . . . . . 12  |-  ( ( J  e. PCon  /\  (
f `  0 )  e.  X  /\  Y  e.  X )  ->  ( J  pi1  ( f `
 0 ) ) 
~=ph𝑔  ( J  pi1  Y ) )
7854, 64, 76, 77syl3anc 1213 . . . . . . . . . . 11  |-  ( ( ( ( J  e. PCon  /\  Y  e.  X
)  /\  ( Base `  ( J  pi1  Y ) )  ~~  1o )  /\  (
f  e.  ( II 
Cn  J )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  ( J  pi1  ( f `  0 ) ) 
~=ph𝑔  ( J  pi1  Y ) )
7953, 5gicen 15798 . . . . . . . . . . 11  |-  ( ( J  pi1  ( f `  0 ) )  ~=ph𝑔  ( J  pi1  Y )  ->  ( Base `  ( J  pi1  ( f ` 
0 ) ) ) 
~~  ( Base `  ( J  pi1  Y ) ) )
8078, 79syl 16 . . . . . . . . . 10  |-  ( ( ( ( J  e. PCon  /\  Y  e.  X
)  /\  ( Base `  ( J  pi1  Y ) )  ~~  1o )  /\  (
f  e.  ( II 
Cn  J )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  ( Base `  ( J  pi1 
( f `  0
) ) )  ~~  ( Base `  ( J  pi1  Y )
) )
81 simplr 749 . . . . . . . . . 10  |-  ( ( ( ( J  e. PCon  /\  Y  e.  X
)  /\  ( Base `  ( J  pi1  Y ) )  ~~  1o )  /\  (
f  e.  ( II 
Cn  J )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  ( Base `  ( J  pi1  Y ) )  ~~  1o )
82 entr 7357 . . . . . . . . . 10  |-  ( ( ( Base `  ( J  pi1  ( f `
 0 ) ) )  ~~  ( Base `  ( J  pi1  Y ) )  /\  ( Base `  ( J  pi1  Y )
)  ~~  1o )  ->  ( Base `  ( J  pi1  ( f `
 0 ) ) )  ~~  1o )
8380, 81, 82syl2anc 656 . . . . . . . . 9  |-  ( ( ( ( J  e. PCon  /\  Y  e.  X
)  /\  ( Base `  ( J  pi1  Y ) )  ~~  1o )  /\  (
f  e.  ( II 
Cn  J )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  ( Base `  ( J  pi1 
( f `  0
) ) )  ~~  1o )
84 en1eqsn 7538 . . . . . . . . 9  |-  ( ( [ ( ( 0 [,] 1 )  X. 
{ ( f ` 
0 ) } ) ] (  ~=ph  `  J
)  e.  ( Base `  ( J  pi1 
( f `  0
) ) )  /\  ( Base `  ( J  pi1  ( f `  0 ) ) )  ~~  1o )  ->  ( Base `  ( J  pi1  ( f `
 0 ) ) )  =  { [
( ( 0 [,] 1 )  X.  {
( f `  0
) } ) ] (  ~=ph  `  J ) } )
8575, 83, 84syl2anc 656 . . . . . . . 8  |-  ( ( ( ( J  e. PCon  /\  Y  e.  X
)  /\  ( Base `  ( J  pi1  Y ) )  ~~  1o )  /\  (
f  e.  ( II 
Cn  J )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  ( Base `  ( J  pi1 
( f `  0
) ) )  =  { [ ( ( 0 [,] 1 )  X.  { ( f `
 0 ) } ) ] (  ~=ph  `  J ) } )
8668, 85eleqtrd 2517 . . . . . . 7  |-  ( ( ( ( J  e. PCon  /\  Y  e.  X
)  /\  ( Base `  ( J  pi1  Y ) )  ~~  1o )  /\  (
f  e.  ( II 
Cn  J )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  [ f ] (  ~=ph  `  J
)  e.  { [
( ( 0 [,] 1 )  X.  {
( f `  0
) } ) ] (  ~=ph  `  J ) } )
87 elsni 3899 . . . . . . 7  |-  ( [ f ] (  ~=ph  `  J )  e.  { [ ( ( 0 [,] 1 )  X. 
{ ( f ` 
0 ) } ) ] (  ~=ph  `  J
) }  ->  [ f ] (  ~=ph  `  J
)  =  [ ( ( 0 [,] 1
)  X.  { ( f `  0 ) } ) ] ( 
~=ph  `  J ) )
8886, 87syl 16 . . . . . 6  |-  ( ( ( ( J  e. PCon  /\  Y  e.  X
)  /\  ( Base `  ( J  pi1  Y ) )  ~~  1o )  /\  (
f  e.  ( II 
Cn  J )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  [ f ] (  ~=ph  `  J
)  =  [ ( ( 0 [,] 1
)  X.  { ( f `  0 ) } ) ] ( 
~=ph  `  J ) )
8913a1i 11 . . . . . . 7  |-  ( ( ( ( J  e. PCon  /\  Y  e.  X
)  /\  ( Base `  ( J  pi1  Y ) )  ~~  1o )  /\  (
f  e.  ( II 
Cn  J )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  (  ~=ph  `  J )  Er  (
II  Cn  J )
)
9089, 58erth 7141 . . . . . 6  |-  ( ( ( ( J  e. PCon  /\  Y  e.  X
)  /\  ( Base `  ( J  pi1  Y ) )  ~~  1o )  /\  (
f  e.  ( II 
Cn  J )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  ( f
(  ~=ph  `  J )
( ( 0 [,] 1 )  X.  {
( f `  0
) } )  <->  [ f ] (  ~=ph  `  J
)  =  [ ( ( 0 [,] 1
)  X.  { ( f `  0 ) } ) ] ( 
~=ph  `  J ) ) )
9188, 90mpbird 232 . . . . 5  |-  ( ( ( ( J  e. PCon  /\  Y  e.  X
)  /\  ( Base `  ( J  pi1  Y ) )  ~~  1o )  /\  (
f  e.  ( II 
Cn  J )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  f (  ~=ph  `  J ) ( ( 0 [,] 1 )  X.  { ( f `
 0 ) } ) )
9291expr 612 . . . 4  |-  ( ( ( ( J  e. PCon  /\  Y  e.  X
)  /\  ( Base `  ( J  pi1  Y ) )  ~~  1o )  /\  f  e.  ( II  Cn  J
) )  ->  (
( f `  0
)  =  ( f `
 1 )  -> 
f (  ~=ph  `  J
) ( ( 0 [,] 1 )  X. 
{ ( f ` 
0 ) } ) ) )
9392ralrimiva 2797 . . 3  |-  ( ( ( J  e. PCon  /\  Y  e.  X )  /\  ( Base `  ( J  pi1  Y ) )  ~~  1o )  ->  A. f  e.  ( II  Cn  J ) ( ( f ` 
0 )  =  ( f `  1 )  ->  f (  ~=ph  `  J ) ( ( 0 [,] 1 )  X.  { ( f `
 0 ) } ) ) )
94 isscon 27029 . . 3  |-  ( J  e. SCon 
<->  ( J  e. PCon  /\  A. f  e.  ( II 
Cn  J ) ( ( f `  0
)  =  ( f `
 1 )  -> 
f (  ~=ph  `  J
) ( ( 0 [,] 1 )  X. 
{ ( f ` 
0 ) } ) ) ) )
9551, 93, 94sylanbrc 659 . 2  |-  ( ( ( J  e. PCon  /\  Y  e.  X )  /\  ( Base `  ( J  pi1  Y ) )  ~~  1o )  ->  J  e. SCon )
9650, 95impbida 823 1  |-  ( ( J  e. PCon  /\  Y  e.  X )  ->  ( J  e. SCon  <->  ( Base `  ( J  pi1  Y ) )  ~~  1o ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 960    = wceq 1364    e. wcel 1761   A.wral 2713   E.wrex 2714   {csn 3874   U.cuni 4088   class class class wbr 4289    X. cxp 4834   -->wf 5411   ` cfv 5415  (class class class)co 6090   1oc1o 6909    Er wer 7094   [cec 7095    ~~ cen 7303   0cc0 9278   1c1 9279   [,]cicc 11299   Basecbs 14170   0gc0g 14374   Grpcgrp 15406    ~=ph𝑔 cgic 15779   Topctop 18398  TopOnctopon 18399    Cn ccn 18728   IIcii 20351    ~=ph cphtpc 20441    pi1 cpi1 20475  PConcpcon 27022  SConcscon 27023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-inf2 7843  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355  ax-pre-sup 9356  ax-addf 9357  ax-mulf 9358
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2263  df-mo 2264  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-iin 4171  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-se 4676  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-isom 5424  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-of 6319  df-om 6476  df-1st 6576  df-2nd 6577  df-supp 6690  df-recs 6828  df-rdg 6862  df-1o 6916  df-2o 6917  df-oadd 6920  df-er 7097  df-ec 7099  df-qs 7103  df-map 7212  df-ixp 7260  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-fsupp 7617  df-fi 7657  df-sup 7687  df-oi 7720  df-card 8105  df-cda 8333  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-div 9990  df-nn 10319  df-2 10376  df-3 10377  df-4 10378  df-5 10379  df-6 10380  df-7 10381  df-8 10382  df-9 10383  df-10 10384  df-n0 10576  df-z 10643  df-dec 10752  df-uz 10858  df-q 10950  df-rp 10988  df-xneg 11085  df-xadd 11086  df-xmul 11087  df-ioo 11300  df-icc 11303  df-fz 11434  df-fzo 11545  df-seq 11803  df-exp 11862  df-hash 12100  df-cj 12584  df-re 12585  df-im 12586  df-sqr 12720  df-abs 12721  df-struct 14172  df-ndx 14173  df-slot 14174  df-base 14175  df-sets 14176  df-ress 14177  df-plusg 14247  df-mulr 14248  df-starv 14249  df-sca 14250  df-vsca 14251  df-ip 14252  df-tset 14253  df-ple 14254  df-ds 14256  df-unif 14257  df-hom 14258  df-cco 14259  df-rest 14357  df-topn 14358  df-0g 14376  df-gsum 14377  df-topgen 14378  df-pt 14379  df-prds 14382  df-xrs 14436  df-qtop 14441  df-imas 14442  df-divs 14443  df-xps 14444  df-mre 14520  df-mrc 14521  df-acs 14523  df-mnd 15411  df-submnd 15461  df-grp 15538  df-mulg 15541  df-ghm 15738  df-gim 15780  df-gic 15781  df-cntz 15828  df-cmn 16272  df-psmet 17709  df-xmet 17710  df-met 17711  df-bl 17712  df-mopn 17713  df-cnfld 17719  df-top 18403  df-bases 18405  df-topon 18406  df-topsp 18407  df-cld 18523  df-cn 18731  df-cnp 18732  df-tx 19035  df-hmeo 19228  df-xms 19795  df-ms 19796  df-tms 19797  df-ii 20353  df-htpy 20442  df-phtpy 20443  df-phtpc 20464  df-pco 20477  df-om1 20478  df-pi1 20480  df-pcon 27024  df-scon 27025
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator