MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbthlem6 Structured version   Unicode version

Theorem sbthlem6 7431
Description: Lemma for sbth 7436. (Contributed by NM, 27-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1  |-  A  e. 
_V
sbthlem.2  |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) ) }
sbthlem.3  |-  H  =  ( ( f  |`  U. D )  u.  ( `' g  |`  ( A 
\  U. D ) ) )
Assertion
Ref Expression
sbthlem6  |-  ( ( ran  f  C_  B  /\  ( ( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g ) )  ->  ran  H  =  B )
Distinct variable groups:    x, A    x, B    x, D    x, f    x, g    x, H
Allowed substitution hints:    A( f, g)    B( f, g)    D( f, g)    H( f, g)

Proof of Theorem sbthlem6
StepHypRef Expression
1 df-ima 4858 . . . . 5  |-  ( `' g " ( A 
\  U. D ) )  =  ran  ( `' g  |`  ( A  \ 
U. D ) )
2 sbthlem.1 . . . . . 6  |-  A  e. 
_V
3 sbthlem.2 . . . . . 6  |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) ) }
42, 3sbthlem4 7429 . . . . 5  |-  ( ( ( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g )  ->  ( `' g " ( A  \  U. D ) )  =  ( B 
\  ( f " U. D ) ) )
51, 4syl5reqr 2490 . . . 4  |-  ( ( ( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g )  ->  ( B  \  ( f " U. D ) )  =  ran  ( `' g  |`  ( A  \  U. D ) ) )
65uneq2d 3515 . . 3  |-  ( ( ( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g )  ->  (
( f " U. D )  u.  ( B  \  ( f " U. D ) ) )  =  ( ( f
" U. D )  u.  ran  ( `' g  |`  ( A  \ 
U. D ) ) ) )
7 rnun 5250 . . . 4  |-  ran  (
( f  |`  U. D
)  u.  ( `' g  |`  ( A  \ 
U. D ) ) )  =  ( ran  ( f  |`  U. D
)  u.  ran  ( `' g  |`  ( A 
\  U. D ) ) )
8 sbthlem.3 . . . . 5  |-  H  =  ( ( f  |`  U. D )  u.  ( `' g  |`  ( A 
\  U. D ) ) )
98rneqi 5071 . . . 4  |-  ran  H  =  ran  ( ( f  |`  U. D )  u.  ( `' g  |`  ( A  \  U. D
) ) )
10 df-ima 4858 . . . . 5  |-  ( f
" U. D )  =  ran  ( f  |`  U. D )
1110uneq1i 3511 . . . 4  |-  ( ( f " U. D
)  u.  ran  ( `' g  |`  ( A 
\  U. D ) ) )  =  ( ran  ( f  |`  U. D
)  u.  ran  ( `' g  |`  ( A 
\  U. D ) ) )
127, 9, 113eqtr4i 2473 . . 3  |-  ran  H  =  ( ( f
" U. D )  u.  ran  ( `' g  |`  ( A  \ 
U. D ) ) )
136, 12syl6reqr 2494 . 2  |-  ( ( ( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g )  ->  ran  H  =  ( ( f
" U. D )  u.  ( B  \ 
( f " U. D ) ) ) )
14 imassrn 5185 . . . 4  |-  ( f
" U. D ) 
C_  ran  f
15 sstr2 3368 . . . 4  |-  ( ( f " U. D
)  C_  ran  f  -> 
( ran  f  C_  B  ->  ( f " U. D )  C_  B
) )
1614, 15ax-mp 5 . . 3  |-  ( ran  f  C_  B  ->  ( f " U. D
)  C_  B )
17 undif 3764 . . 3  |-  ( ( f " U. D
)  C_  B  <->  ( (
f " U. D
)  u.  ( B 
\  ( f " U. D ) ) )  =  B )
1816, 17sylib 196 . 2  |-  ( ran  f  C_  B  ->  ( ( f " U. D )  u.  ( B  \  ( f " U. D ) ) )  =  B )
1913, 18sylan9eqr 2497 1  |-  ( ( ran  f  C_  B  /\  ( ( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g ) )  ->  ran  H  =  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   {cab 2429   _Vcvv 2977    \ cdif 3330    u. cun 3331    C_ wss 3333   U.cuni 4096   `'ccnv 4844   dom cdm 4845   ran crn 4846    |` cres 4847   "cima 4848   Fun wfun 5417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4418  ax-nul 4426  ax-pr 4536
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-ral 2725  df-rex 2726  df-rab 2729  df-v 2979  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-nul 3643  df-if 3797  df-sn 3883  df-pr 3885  df-op 3889  df-uni 4097  df-br 4298  df-opab 4356  df-id 4641  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-fun 5425
This theorem is referenced by:  sbthlem9  7434
  Copyright terms: Public domain W3C validator