MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbthlem5 Structured version   Visualization version   Unicode version

Theorem sbthlem5 7691
Description: Lemma for sbth 7697. (Contributed by NM, 22-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1  |-  A  e. 
_V
sbthlem.2  |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) ) }
sbthlem.3  |-  H  =  ( ( f  |`  U. D )  u.  ( `' g  |`  ( A 
\  U. D ) ) )
Assertion
Ref Expression
sbthlem5  |-  ( ( dom  f  =  A  /\  ran  g  C_  A )  ->  dom  H  =  A )
Distinct variable groups:    x, A    x, B    x, D    x, f    x, g    x, H
Allowed substitution hints:    A( f, g)    B( f, g)    D( f, g)    H( f, g)

Proof of Theorem sbthlem5
StepHypRef Expression
1 sbthlem.1 . . . . . . . . 9  |-  A  e. 
_V
2 sbthlem.2 . . . . . . . . 9  |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) ) }
31, 2sbthlem1 7687 . . . . . . . 8  |-  U. D  C_  ( A  \  (
g " ( B 
\  ( f " U. D ) ) ) )
4 difss 3562 . . . . . . . 8  |-  ( A 
\  ( g "
( B  \  (
f " U. D
) ) ) ) 
C_  A
53, 4sstri 3443 . . . . . . 7  |-  U. D  C_  A
6 sseq2 3456 . . . . . . 7  |-  ( dom  f  =  A  -> 
( U. D  C_  dom  f  <->  U. D  C_  A
) )
75, 6mpbiri 237 . . . . . 6  |-  ( dom  f  =  A  ->  U. D  C_  dom  f
)
8 dfss 3421 . . . . . 6  |-  ( U. D  C_  dom  f  <->  U. D  =  ( U. D  i^i  dom  f ) )
97, 8sylib 200 . . . . 5  |-  ( dom  f  =  A  ->  U. D  =  ( U. D  i^i  dom  f
) )
109uneq1d 3589 . . . 4  |-  ( dom  f  =  A  -> 
( U. D  u.  ( A  \  U. D
) )  =  ( ( U. D  i^i  dom  f )  u.  ( A  \  U. D ) ) )
111, 2sbthlem3 7689 . . . . . . 7  |-  ( ran  g  C_  A  ->  ( g " ( B 
\  ( f " U. D ) ) )  =  ( A  \  U. D ) )
12 imassrn 5182 . . . . . . 7  |-  ( g
" ( B  \ 
( f " U. D ) ) ) 
C_  ran  g
1311, 12syl6eqssr 3485 . . . . . 6  |-  ( ran  g  C_  A  ->  ( A  \  U. D
)  C_  ran  g )
14 dfss 3421 . . . . . 6  |-  ( ( A  \  U. D
)  C_  ran  g  <->  ( A  \ 
U. D )  =  ( ( A  \  U. D )  i^i  ran  g ) )
1513, 14sylib 200 . . . . 5  |-  ( ran  g  C_  A  ->  ( A  \  U. D
)  =  ( ( A  \  U. D
)  i^i  ran  g ) )
1615uneq2d 3590 . . . 4  |-  ( ran  g  C_  A  ->  ( ( U. D  i^i  dom  f )  u.  ( A  \  U. D ) )  =  ( ( U. D  i^i  dom  f )  u.  (
( A  \  U. D )  i^i  ran  g ) ) )
1710, 16sylan9eq 2507 . . 3  |-  ( ( dom  f  =  A  /\  ran  g  C_  A )  ->  ( U. D  u.  ( A  \  U. D ) )  =  ( ( U. D  i^i  dom  f )  u.  (
( A  \  U. D )  i^i  ran  g ) ) )
18 sbthlem.3 . . . . 5  |-  H  =  ( ( f  |`  U. D )  u.  ( `' g  |`  ( A 
\  U. D ) ) )
1918dmeqi 5039 . . . 4  |-  dom  H  =  dom  ( ( f  |`  U. D )  u.  ( `' g  |`  ( A  \  U. D
) ) )
20 dmun 5044 . . . . 5  |-  dom  (
( f  |`  U. D
)  u.  ( `' g  |`  ( A  \ 
U. D ) ) )  =  ( dom  ( f  |`  U. D
)  u.  dom  ( `' g  |`  ( A 
\  U. D ) ) )
21 dmres 5128 . . . . . 6  |-  dom  (
f  |`  U. D )  =  ( U. D  i^i  dom  f )
22 dmres 5128 . . . . . . 7  |-  dom  ( `' g  |`  ( A 
\  U. D ) )  =  ( ( A 
\  U. D )  i^i 
dom  `' g )
23 df-rn 4848 . . . . . . . . 9  |-  ran  g  =  dom  `' g
2423eqcomi 2462 . . . . . . . 8  |-  dom  `' g  =  ran  g
2524ineq2i 3633 . . . . . . 7  |-  ( ( A  \  U. D
)  i^i  dom  `' g )  =  ( ( A  \  U. D
)  i^i  ran  g )
2622, 25eqtri 2475 . . . . . 6  |-  dom  ( `' g  |`  ( A 
\  U. D ) )  =  ( ( A 
\  U. D )  i^i 
ran  g )
2721, 26uneq12i 3588 . . . . 5  |-  ( dom  ( f  |`  U. D
)  u.  dom  ( `' g  |`  ( A 
\  U. D ) ) )  =  ( ( U. D  i^i  dom  f )  u.  (
( A  \  U. D )  i^i  ran  g ) )
2820, 27eqtri 2475 . . . 4  |-  dom  (
( f  |`  U. D
)  u.  ( `' g  |`  ( A  \ 
U. D ) ) )  =  ( ( U. D  i^i  dom  f )  u.  (
( A  \  U. D )  i^i  ran  g ) )
2919, 28eqtri 2475 . . 3  |-  dom  H  =  ( ( U. D  i^i  dom  f )  u.  ( ( A  \  U. D )  i^i  ran  g ) )
3017, 29syl6reqr 2506 . 2  |-  ( ( dom  f  =  A  /\  ran  g  C_  A )  ->  dom  H  =  ( U. D  u.  ( A  \  U. D ) ) )
31 undif 3850 . . 3  |-  ( U. D  C_  A  <->  ( U. D  u.  ( A  \ 
U. D ) )  =  A )
325, 31mpbi 212 . 2  |-  ( U. D  u.  ( A  \ 
U. D ) )  =  A
3330, 32syl6eq 2503 1  |-  ( ( dom  f  =  A  /\  ran  g  C_  A )  ->  dom  H  =  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 371    = wceq 1446    e. wcel 1889   {cab 2439   _Vcvv 3047    \ cdif 3403    u. cun 3404    i^i cin 3405    C_ wss 3406   U.cuni 4201   `'ccnv 4836   dom cdm 4837   ran crn 4838    |` cres 4839   "cima 4840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1671  ax-4 1684  ax-5 1760  ax-6 1807  ax-7 1853  ax-9 1898  ax-10 1917  ax-11 1922  ax-12 1935  ax-13 2093  ax-ext 2433  ax-sep 4528  ax-nul 4537  ax-pr 4642
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 988  df-tru 1449  df-ex 1666  df-nf 1670  df-sb 1800  df-eu 2305  df-mo 2306  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2583  df-ne 2626  df-ral 2744  df-rex 2745  df-rab 2748  df-v 3049  df-dif 3409  df-un 3411  df-in 3413  df-ss 3420  df-nul 3734  df-if 3884  df-sn 3971  df-pr 3973  df-op 3977  df-uni 4202  df-br 4406  df-opab 4465  df-xp 4843  df-cnv 4845  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850
This theorem is referenced by:  sbthlem9  7695
  Copyright terms: Public domain W3C validator