MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbthlem4 Structured version   Unicode version

Theorem sbthlem4 7423
Description: Lemma for sbth 7430. (Contributed by NM, 27-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1  |-  A  e. 
_V
sbthlem.2  |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) ) }
Assertion
Ref Expression
sbthlem4  |-  ( ( ( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g )  ->  ( `' g " ( A  \  U. D ) )  =  ( B 
\  ( f " U. D ) ) )
Distinct variable groups:    x, A    x, B    x, D    x, f    x, g
Allowed substitution hints:    A( f, g)    B( f, g)    D( f, g)

Proof of Theorem sbthlem4
StepHypRef Expression
1 dfdm4 5031 . . . . 5  |-  dom  (
g  |`  ( B  \ 
( f " U. D ) ) )  =  ran  `' ( g  |`  ( B  \  ( f " U. D ) ) )
2 difss 3482 . . . . . . 7  |-  ( B 
\  ( f " U. D ) )  C_  B
3 sseq2 3377 . . . . . . 7  |-  ( dom  g  =  B  -> 
( ( B  \ 
( f " U. D ) )  C_  dom  g  <->  ( B  \ 
( f " U. D ) )  C_  B ) )
42, 3mpbiri 233 . . . . . 6  |-  ( dom  g  =  B  -> 
( B  \  (
f " U. D
) )  C_  dom  g )
5 ssdmres 5131 . . . . . 6  |-  ( ( B  \  ( f
" U. D ) )  C_  dom  g  <->  dom  ( g  |`  ( B  \  (
f " U. D
) ) )  =  ( B  \  (
f " U. D
) ) )
64, 5sylib 196 . . . . 5  |-  ( dom  g  =  B  ->  dom  ( g  |`  ( B  \  ( f " U. D ) ) )  =  ( B  \ 
( f " U. D ) ) )
71, 6syl5reqr 2489 . . . 4  |-  ( dom  g  =  B  -> 
( B  \  (
f " U. D
) )  =  ran  `' ( g  |`  ( B  \  ( f " U. D ) ) ) )
8 funcnvres 5486 . . . . . 6  |-  ( Fun  `' g  ->  `' ( g  |`  ( B  \  ( f " U. D ) ) )  =  ( `' g  |`  ( g " ( B  \  ( f " U. D ) ) ) ) )
9 sbthlem.1 . . . . . . . 8  |-  A  e. 
_V
10 sbthlem.2 . . . . . . . 8  |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) ) }
119, 10sbthlem3 7422 . . . . . . 7  |-  ( ran  g  C_  A  ->  ( g " ( B 
\  ( f " U. D ) ) )  =  ( A  \  U. D ) )
1211reseq2d 5109 . . . . . 6  |-  ( ran  g  C_  A  ->  ( `' g  |`  ( g
" ( B  \ 
( f " U. D ) ) ) )  =  ( `' g  |`  ( A  \ 
U. D ) ) )
138, 12sylan9eqr 2496 . . . . 5  |-  ( ( ran  g  C_  A  /\  Fun  `' g )  ->  `' ( g  |`  ( B  \  (
f " U. D
) ) )  =  ( `' g  |`  ( A  \  U. D
) ) )
1413rneqd 5066 . . . 4  |-  ( ( ran  g  C_  A  /\  Fun  `' g )  ->  ran  `' (
g  |`  ( B  \ 
( f " U. D ) ) )  =  ran  ( `' g  |`  ( A  \ 
U. D ) ) )
157, 14sylan9eq 2494 . . 3  |-  ( ( dom  g  =  B  /\  ( ran  g  C_  A  /\  Fun  `' g ) )  -> 
( B  \  (
f " U. D
) )  =  ran  ( `' g  |`  ( A 
\  U. D ) ) )
1615anassrs 648 . 2  |-  ( ( ( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g )  ->  ( B  \  ( f " U. D ) )  =  ran  ( `' g  |`  ( A  \  U. D ) ) )
17 df-ima 4852 . 2  |-  ( `' g " ( A 
\  U. D ) )  =  ran  ( `' g  |`  ( A  \ 
U. D ) )
1816, 17syl6reqr 2493 1  |-  ( ( ( dom  g  =  B  /\  ran  g  C_  A )  /\  Fun  `' g )  ->  ( `' g " ( A  \  U. D ) )  =  ( B 
\  ( f " U. D ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   {cab 2428   _Vcvv 2971    \ cdif 3324    C_ wss 3327   U.cuni 4090   `'ccnv 4838   dom cdm 4839   ran crn 4840    |` cres 4841   "cima 4842   Fun wfun 5411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4412  ax-nul 4420  ax-pr 4530
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2719  df-rex 2720  df-rab 2723  df-v 2973  df-dif 3330  df-un 3332  df-in 3334  df-ss 3341  df-nul 3637  df-if 3791  df-sn 3877  df-pr 3879  df-op 3883  df-uni 4091  df-br 4292  df-opab 4350  df-id 4635  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-fun 5419
This theorem is referenced by:  sbthlem6  7425  sbthlem8  7427
  Copyright terms: Public domain W3C validator