MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbthlem2 Structured version   Unicode version

Theorem sbthlem2 7630
Description: Lemma for sbth 7639. (Contributed by NM, 22-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1  |-  A  e. 
_V
sbthlem.2  |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) ) }
Assertion
Ref Expression
sbthlem2  |-  ( ran  g  C_  A  ->  ( A  \  ( g
" ( B  \ 
( f " U. D ) ) ) )  C_  U. D )
Distinct variable groups:    x, A    x, B    x, D    x, f    x, g
Allowed substitution hints:    A( f, g)    B( f, g)    D( f, g)

Proof of Theorem sbthlem2
StepHypRef Expression
1 sbthlem.1 . . . . . . . . 9  |-  A  e. 
_V
2 sbthlem.2 . . . . . . . . 9  |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) ) }
31, 2sbthlem1 7629 . . . . . . . 8  |-  U. D  C_  ( A  \  (
g " ( B 
\  ( f " U. D ) ) ) )
4 imass2 5362 . . . . . . . 8  |-  ( U. D  C_  ( A  \ 
( g " ( B  \  ( f " U. D ) ) ) )  ->  ( f " U. D )  C_  ( f " ( A  \  ( g "
( B  \  (
f " U. D
) ) ) ) ) )
5 sscon 3623 . . . . . . . 8  |-  ( ( f " U. D
)  C_  ( f " ( A  \ 
( g " ( B  \  ( f " U. D ) ) ) ) )  ->  ( B  \  ( f "
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) ) )  C_  ( B  \  (
f " U. D
) ) )
63, 4, 5mp2b 10 . . . . . . 7  |-  ( B 
\  ( f "
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) ) )  C_  ( B  \  (
f " U. D
) )
7 imass2 5362 . . . . . . 7  |-  ( ( B  \  ( f
" ( A  \ 
( g " ( B  \  ( f " U. D ) ) ) ) ) )  C_  ( B  \  (
f " U. D
) )  ->  (
g " ( B 
\  ( f "
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) ) ) ) 
C_  ( g "
( B  \  (
f " U. D
) ) ) )
8 sscon 3623 . . . . . . 7  |-  ( ( g " ( B 
\  ( f "
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) ) ) ) 
C_  ( g "
( B  \  (
f " U. D
) ) )  -> 
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) )  C_  ( A  \  ( g " ( B  \  ( f "
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) ) ) ) ) )
96, 7, 8mp2b 10 . . . . . 6  |-  ( A 
\  ( g "
( B  \  (
f " U. D
) ) ) ) 
C_  ( A  \ 
( g " ( B  \  ( f "
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) ) ) ) )
10 imassrn 5338 . . . . . . . 8  |-  ( g
" ( B  \ 
( f " ( A  \  ( g "
( B  \  (
f " U. D
) ) ) ) ) ) )  C_  ran  g
11 sstr2 3496 . . . . . . . 8  |-  ( ( g " ( B 
\  ( f "
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) ) ) ) 
C_  ran  g  ->  ( ran  g  C_  A  ->  ( g " ( B  \  ( f "
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) ) ) ) 
C_  A ) )
1210, 11ax-mp 5 . . . . . . 7  |-  ( ran  g  C_  A  ->  ( g " ( B 
\  ( f "
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) ) ) ) 
C_  A )
13 difss 3616 . . . . . . 7  |-  ( A 
\  ( g "
( B  \  (
f " U. D
) ) ) ) 
C_  A
14 ssconb 3622 . . . . . . 7  |-  ( ( ( g " ( B  \  ( f "
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) ) ) ) 
C_  A  /\  ( A  \  ( g "
( B  \  (
f " U. D
) ) ) ) 
C_  A )  -> 
( ( g "
( B  \  (
f " ( A 
\  ( g "
( B  \  (
f " U. D
) ) ) ) ) ) )  C_  ( A  \  ( A  \  ( g "
( B  \  (
f " U. D
) ) ) ) )  <->  ( A  \ 
( g " ( B  \  ( f " U. D ) ) ) )  C_  ( A  \  ( g " ( B  \  ( f "
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) ) ) ) ) ) )
1512, 13, 14sylancl 662 . . . . . 6  |-  ( ran  g  C_  A  ->  ( ( g " ( B  \  ( f "
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) ) ) ) 
C_  ( A  \ 
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) )  <->  ( A  \  ( g " ( B  \  ( f " U. D ) ) ) )  C_  ( A  \  ( g " ( B  \  ( f "
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) ) ) ) ) ) )
169, 15mpbiri 233 . . . . 5  |-  ( ran  g  C_  A  ->  ( g " ( B 
\  ( f "
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) ) ) ) 
C_  ( A  \ 
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) ) )
1716, 13jctil 537 . . . 4  |-  ( ran  g  C_  A  ->  ( ( A  \  (
g " ( B 
\  ( f " U. D ) ) ) )  C_  A  /\  ( g " ( B  \  ( f "
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) ) ) ) 
C_  ( A  \ 
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) ) ) )
181, 13ssexi 4582 . . . . 5  |-  ( A 
\  ( g "
( B  \  (
f " U. D
) ) ) )  e.  _V
19 sseq1 3510 . . . . . 6  |-  ( x  =  ( A  \ 
( g " ( B  \  ( f " U. D ) ) ) )  ->  ( x  C_  A  <->  ( A  \ 
( g " ( B  \  ( f " U. D ) ) ) )  C_  A )
)
20 imaeq2 5323 . . . . . . . . 9  |-  ( x  =  ( A  \ 
( g " ( B  \  ( f " U. D ) ) ) )  ->  ( f " x )  =  ( f " ( A  \  ( g "
( B  \  (
f " U. D
) ) ) ) ) )
2120difeq2d 3607 . . . . . . . 8  |-  ( x  =  ( A  \ 
( g " ( B  \  ( f " U. D ) ) ) )  ->  ( B  \  ( f " x
) )  =  ( B  \  ( f
" ( A  \ 
( g " ( B  \  ( f " U. D ) ) ) ) ) ) )
2221imaeq2d 5327 . . . . . . 7  |-  ( x  =  ( A  \ 
( g " ( B  \  ( f " U. D ) ) ) )  ->  ( g " ( B  \ 
( f " x
) ) )  =  ( g " ( B  \  ( f "
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) ) ) ) )
23 difeq2 3601 . . . . . . 7  |-  ( x  =  ( A  \ 
( g " ( B  \  ( f " U. D ) ) ) )  ->  ( A  \  x )  =  ( A  \  ( A 
\  ( g "
( B  \  (
f " U. D
) ) ) ) ) )
2422, 23sseq12d 3518 . . . . . 6  |-  ( x  =  ( A  \ 
( g " ( B  \  ( f " U. D ) ) ) )  ->  ( (
g " ( B 
\  ( f "
x ) ) ) 
C_  ( A  \  x )  <->  ( g " ( B  \ 
( f " ( A  \  ( g "
( B  \  (
f " U. D
) ) ) ) ) ) )  C_  ( A  \  ( A  \  ( g "
( B  \  (
f " U. D
) ) ) ) ) ) )
2519, 24anbi12d 710 . . . . 5  |-  ( x  =  ( A  \ 
( g " ( B  \  ( f " U. D ) ) ) )  ->  ( (
x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) )  <->  ( ( A  \  ( g "
( B  \  (
f " U. D
) ) ) ) 
C_  A  /\  (
g " ( B 
\  ( f "
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) ) ) ) 
C_  ( A  \ 
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) ) ) ) )
2618, 25elab 3232 . . . 4  |-  ( ( A  \  ( g
" ( B  \ 
( f " U. D ) ) ) )  e.  { x  |  ( x  C_  A  /\  ( g "
( B  \  (
f " x ) ) )  C_  ( A  \  x ) ) }  <->  ( ( A 
\  ( g "
( B  \  (
f " U. D
) ) ) ) 
C_  A  /\  (
g " ( B 
\  ( f "
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) ) ) ) 
C_  ( A  \ 
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) ) ) )
2717, 26sylibr 212 . . 3  |-  ( ran  g  C_  A  ->  ( A  \  ( g
" ( B  \ 
( f " U. D ) ) ) )  e.  { x  |  ( x  C_  A  /\  ( g "
( B  \  (
f " x ) ) )  C_  ( A  \  x ) ) } )
2827, 2syl6eleqr 2542 . 2  |-  ( ran  g  C_  A  ->  ( A  \  ( g
" ( B  \ 
( f " U. D ) ) ) )  e.  D )
29 elssuni 4264 . 2  |-  ( ( A  \  ( g
" ( B  \ 
( f " U. D ) ) ) )  e.  D  -> 
( A  \  (
g " ( B 
\  ( f " U. D ) ) ) )  C_  U. D )
3028, 29syl 16 1  |-  ( ran  g  C_  A  ->  ( A  \  ( g
" ( B  \ 
( f " U. D ) ) ) )  C_  U. D )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1383    e. wcel 1804   {cab 2428   _Vcvv 3095    \ cdif 3458    C_ wss 3461   U.cuni 4234   ran crn 4990   "cima 4992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-sep 4558  ax-nul 4566  ax-pr 4676
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-ral 2798  df-rex 2799  df-rab 2802  df-v 3097  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3771  df-if 3927  df-sn 4015  df-pr 4017  df-op 4021  df-uni 4235  df-br 4438  df-opab 4496  df-xp 4995  df-cnv 4997  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002
This theorem is referenced by:  sbthlem3  7631
  Copyright terms: Public domain W3C validator