MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbth Unicode version

Theorem sbth 6866
Description: Schroeder-Bernstein Theorem. Theorem 18 of [Suppes] p. 95. This theorem states that if set 
A is smaller (has lower cardinality) than  B and vice-versa, then  A and  B are equinumerous (have the same cardinality). The interesting thing is that this can be proved without invoking the Axiom of Choice, as we do here, but the proof as you can see is quite difficult. (The theorem can be proved more easily if we allow AC.) The main proof consists of lemmas sbthlem1 6856 through sbthlem10 6865; this final piece mainly changes bound variables to eliminate the hypotheses of sbthlem10 6865. We follow closely the proof in Suppes, which you should consult to understand our proof at a higher level. Note that Suppes' proof, which is credited to J. M. Whitaker, does not require the Axiom of Infinity. (Contributed by NM, 8-Jun-1998.)
Assertion
Ref Expression
sbth  |-  ( ( A  ~<_  B  /\  B  ~<_  A )  ->  A  ~~  B )

Proof of Theorem sbth
StepHypRef Expression
1 reldom 6755 . . . 4  |-  Rel  ~<_
21brrelexi 4636 . . 3  |-  ( A  ~<_  B  ->  A  e.  _V )
31brrelexi 4636 . . 3  |-  ( B  ~<_  A  ->  B  e.  _V )
4 breq1 3923 . . . . . 6  |-  ( z  =  A  ->  (
z  ~<_  w  <->  A  ~<_  w ) )
5 breq2 3924 . . . . . 6  |-  ( z  =  A  ->  (
w  ~<_  z  <->  w  ~<_  A ) )
64, 5anbi12d 694 . . . . 5  |-  ( z  =  A  ->  (
( z  ~<_  w  /\  w  ~<_  z )  <->  ( A  ~<_  w  /\  w  ~<_  A ) ) )
7 breq1 3923 . . . . 5  |-  ( z  =  A  ->  (
z  ~~  w  <->  A  ~~  w ) )
86, 7imbi12d 313 . . . 4  |-  ( z  =  A  ->  (
( ( z  ~<_  w  /\  w  ~<_  z )  ->  z  ~~  w
)  <->  ( ( A  ~<_  w  /\  w  ~<_  A )  ->  A  ~~  w ) ) )
9 breq2 3924 . . . . . 6  |-  ( w  =  B  ->  ( A  ~<_  w  <->  A  ~<_  B ) )
10 breq1 3923 . . . . . 6  |-  ( w  =  B  ->  (
w  ~<_  A  <->  B  ~<_  A ) )
119, 10anbi12d 694 . . . . 5  |-  ( w  =  B  ->  (
( A  ~<_  w  /\  w  ~<_  A )  <->  ( A  ~<_  B  /\  B  ~<_  A ) ) )
12 breq2 3924 . . . . 5  |-  ( w  =  B  ->  ( A  ~~  w  <->  A  ~~  B ) )
1311, 12imbi12d 313 . . . 4  |-  ( w  =  B  ->  (
( ( A  ~<_  w  /\  w  ~<_  A )  ->  A  ~~  w
)  <->  ( ( A  ~<_  B  /\  B  ~<_  A )  ->  A  ~~  B ) ) )
14 vex 2730 . . . . 5  |-  z  e. 
_V
15 sseq1 3120 . . . . . . 7  |-  ( y  =  x  ->  (
y  C_  z  <->  x  C_  z
) )
16 imaeq2 4915 . . . . . . . . . 10  |-  ( y  =  x  ->  (
f " y )  =  ( f "
x ) )
1716difeq2d 3211 . . . . . . . . 9  |-  ( y  =  x  ->  (
w  \  ( f " y ) )  =  ( w  \ 
( f " x
) ) )
1817imaeq2d 4919 . . . . . . . 8  |-  ( y  =  x  ->  (
g " ( w 
\  ( f "
y ) ) )  =  ( g "
( w  \  (
f " x ) ) ) )
19 difeq2 3205 . . . . . . . 8  |-  ( y  =  x  ->  (
z  \  y )  =  ( z  \  x ) )
2018, 19sseq12d 3128 . . . . . . 7  |-  ( y  =  x  ->  (
( g " (
w  \  ( f " y ) ) )  C_  ( z  \  y )  <->  ( g " ( w  \ 
( f " x
) ) )  C_  ( z  \  x
) ) )
2115, 20anbi12d 694 . . . . . 6  |-  ( y  =  x  ->  (
( y  C_  z  /\  ( g " (
w  \  ( f " y ) ) )  C_  ( z  \  y ) )  <-> 
( x  C_  z  /\  ( g " (
w  \  ( f " x ) ) )  C_  ( z  \  x ) ) ) )
2221cbvabv 2368 . . . . 5  |-  { y  |  ( y  C_  z  /\  ( g "
( w  \  (
f " y ) ) )  C_  (
z  \  y )
) }  =  {
x  |  ( x 
C_  z  /\  (
g " ( w 
\  ( f "
x ) ) ) 
C_  ( z  \  x ) ) }
23 eqid 2253 . . . . 5  |-  ( ( f  |`  U. { y  |  ( y  C_  z  /\  ( g "
( w  \  (
f " y ) ) )  C_  (
z  \  y )
) } )  u.  ( `' g  |`  ( z  \  U. { y  |  ( y  C_  z  /\  ( g " (
w  \  ( f " y ) ) )  C_  ( z  \  y ) ) } ) ) )  =  ( ( f  |`  U. { y  |  ( y  C_  z  /\  ( g " (
w  \  ( f " y ) ) )  C_  ( z  \  y ) ) } )  u.  ( `' g  |`  ( z 
\  U. { y  |  ( y  C_  z  /\  ( g " (
w  \  ( f " y ) ) )  C_  ( z  \  y ) ) } ) ) )
24 vex 2730 . . . . 5  |-  w  e. 
_V
2514, 22, 23, 24sbthlem10 6865 . . . 4  |-  ( ( z  ~<_  w  /\  w  ~<_  z )  ->  z  ~~  w )
268, 13, 25vtocl2g 2785 . . 3  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( ( A  ~<_  B  /\  B  ~<_  A )  ->  A  ~~  B
) )
272, 3, 26syl2an 465 . 2  |-  ( ( A  ~<_  B  /\  B  ~<_  A )  ->  (
( A  ~<_  B  /\  B  ~<_  A )  ->  A  ~~  B ) )
2827pm2.43i 45 1  |-  ( ( A  ~<_  B  /\  B  ~<_  A )  ->  A  ~~  B )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621   {cab 2239   _Vcvv 2727    \ cdif 3075    u. cun 3076    C_ wss 3078   U.cuni 3727   class class class wbr 3920   `'ccnv 4579    |` cres 4582   "cima 4583    ~~ cen 6746    ~<_ cdom 6747
This theorem is referenced by:  sbthb  6867  sdomnsym  6871  domtriord  6892  xpen  6909  limenpsi  6921  php  6930  onomeneq  6935  unbnn  6998  infxpenlem  7525  fseqen  7538  infpwfien  7573  inffien  7574  alephdom  7592  mappwen  7623  infcdaabs  7716  infunabs  7717  infcda  7718  infdif  7719  infxpabs  7722  infmap2  7728  gchhar  8173  gchaleph  8177  inttsk  8276  inar1  8277  xpnnenOLD  12362  znnen  12365  qnnen  12366  rpnnen  12379  rexpen  12380  fislw  14771  opnreen  18168  ovolctb2  18683  vitali  18800  aannenlem3  19542  basellem4  20153  lgsqrlem4  20415  umgraex  23046  sndw  24265  pellexlem4  26083  pellexlem5  26084  idomsubgmo  26680
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-rab 2516  df-v 2729  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-br 3921  df-opab 3975  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-en 6750  df-dom 6751
  Copyright terms: Public domain W3C validator