Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbth Structured version   Unicode version

Theorem sbth 7698
 Description: Schroeder-Bernstein Theorem. Theorem 18 of [Suppes] p. 95. This theorem states that if set is smaller (has lower cardinality) than and vice-versa, then and are equinumerous (have the same cardinality). The interesting thing is that this can be proved without invoking the Axiom of Choice, as we do here, but the proof as you can see is quite difficult. (The theorem can be proved more easily if we allow AC.) The main proof consists of lemmas sbthlem1 7688 through sbthlem10 7697; this final piece mainly changes bound variables to eliminate the hypotheses of sbthlem10 7697. We follow closely the proof in Suppes, which you should consult to understand our proof at a higher level. Note that Suppes' proof, which is credited to J. M. Whitaker, does not require the Axiom of Infinity. This is Metamath 100 proof #25. (Contributed by NM, 8-Jun-1998.)
Assertion
Ref Expression
sbth

Proof of Theorem sbth
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldom 7583 . . . 4
21brrelexi 4895 . . 3
31brrelexi 4895 . . 3
4 breq1 4429 . . . . . 6
5 breq2 4430 . . . . . 6
64, 5anbi12d 715 . . . . 5
7 breq1 4429 . . . . 5
86, 7imbi12d 321 . . . 4
9 breq2 4430 . . . . . 6
10 breq1 4429 . . . . . 6
119, 10anbi12d 715 . . . . 5
12 breq2 4430 . . . . 5
1311, 12imbi12d 321 . . . 4
14 vex 3090 . . . . 5
15 sseq1 3491 . . . . . . 7
16 imaeq2 5184 . . . . . . . . . 10
1716difeq2d 3589 . . . . . . . . 9
1817imaeq2d 5188 . . . . . . . 8
19 difeq2 3583 . . . . . . . 8
2018, 19sseq12d 3499 . . . . . . 7
2115, 20anbi12d 715 . . . . . 6
2221cbvabv 2572 . . . . 5
23 eqid 2429 . . . . 5
24 vex 3090 . . . . 5
2514, 22, 23, 24sbthlem10 7697 . . . 4
268, 13, 25vtocl2g 3149 . . 3
272, 3, 26syl2an 479 . 2
2827pm2.43i 49 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wa 370   wceq 1437   wcel 1870  cab 2414  cvv 3087   cdif 3439   cun 3440   wss 3442  cuni 4222   class class class wbr 4426  ccnv 4853   cres 4856  cima 4857   cen 7574   cdom 7575 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597 This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-ral 2787  df-rex 2788  df-rab 2791  df-v 3089  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-op 4009  df-uni 4223  df-br 4427  df-opab 4485  df-id 4769  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-en 7578  df-dom 7579 This theorem is referenced by:  sbthb  7699  sdomnsym  7703  domtriord  7724  xpen  7741  limenpsi  7753  php  7762  onomeneq  7768  unbnn  7833  infxpenlem  8443  fseqen  8456  infpwfien  8491  inffien  8492  alephdom  8510  mappwen  8541  infcdaabs  8634  infunabs  8635  infcda  8636  infdif  8637  infxpabs  8640  infmap2  8646  gchaleph  9095  gchhar  9103  inttsk  9198  inar1  9199  znnen  14243  qnnen  14244  rpnnen  14257  rexpen  14258  mreexfidimd  15511  acsinfdimd  16383  fislw  17216  opnreen  21764  ovolctb2  22330  vitali  22456  aannenlem3  23159  basellem4  23881  lgsqrlem4  24143  umgraex  24904  phpreu  31644  poimirlem26  31681  pellexlem4  35397  pellexlem5  35398  idomsubgmo  35786
 Copyright terms: Public domain W3C validator