Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbnOLD Structured version   Unicode version

Theorem sbnOLD 2106
 Description: Obsolete proof of sbn 2105 as of 31-Dec-2018. (Contributed by NM, 5-Aug-1993.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sbnOLD

Proof of Theorem sbnOLD
StepHypRef Expression
1 sbequ2 1713 . . . . 5
2 sbequ2 1713 . . . . 5
31, 2nsyld 140 . . . 4
43sps 1814 . . 3
5 sb4 2070 . . . 4
6 sb1 1714 . . . . . 6
7 equs3 1706 . . . . . 6
86, 7sylib 196 . . . . 5
98con2i 120 . . . 4
105, 9syl6 33 . . 3
114, 10pm2.61i 164 . 2
12 sbequ1 1960 . . . 4
1312con3rr3 136 . . 3
14 sb2 2066 . . . . . 6
15 notnot 291 . . . . . . 7
1615sbbii 1718 . . . . . 6
1714, 16sylibr 212 . . . . 5
1817con3i 135 . . . 4
19 equs3 1706 . . . 4
2018, 19sylibr 212 . . 3
21 df-sb 1712 . . 3
2213, 20, 21sylanbrc 664 . 2
2311, 22impbii 188 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wi 4   wb 184   wa 369  wal 1377  wex 1596  wsb 1711 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-12 1803  ax-13 1968 This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1597  df-nf 1600  df-sb 1712 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator