Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbn Structured version   Visualization version   Unicode version

Theorem sbn 2240
 Description: Negation inside and outside of substitution are equivalent. (Contributed by NM, 14-May-1993.) (Proof shortened by Wolf Lammen, 30-Apr-2018.)
Assertion
Ref Expression
sbn

Proof of Theorem sbn
StepHypRef Expression
1 df-sb 1806 . . 3
2 exanali 1729 . . . 4
32anbi2i 708 . . 3
4 annim 432 . . 3
51, 3, 43bitri 279 . 2
6 dfsb3 2223 . 2
75, 6xchbinxr 318 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wi 4   wb 189   wa 376  wal 1450  wex 1671  wsb 1805 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-10 1932  ax-12 1950  ax-13 2104 This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-ex 1672  df-nf 1676  df-sb 1806 This theorem is referenced by:  sbi2  2242  sbor  2247  sban  2248  sbex  2312  sbcng  3296  difab  3703  bj-abfal  31577  wl-sb8et  31951  pm13.196a  36835
 Copyright terms: Public domain W3C validator