Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbiota1 Structured version   Visualization version   Unicode version

Theorem sbiota1 36855
Description: Theorem *14.25 in [WhiteheadRussell] p. 192. (Contributed by Andrew Salmon, 12-Jul-2011.)
Assertion
Ref Expression
sbiota1  |-  ( E! x ph  ->  ( A. x ( ph  ->  ps )  <->  [. ( iota x ph )  /  x ]. ps ) )

Proof of Theorem sbiota1
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-eu 2323 . . . 4  |-  ( E! x ph  <->  E. y A. x ( ph  <->  x  =  y ) )
21biimpi 199 . . 3  |-  ( E! x ph  ->  E. y A. x ( ph  <->  x  =  y ) )
3 iota4 5571 . . 3  |-  ( E! x ph  ->  [. ( iota x ph )  /  x ]. ph )
4 iotaval 5564 . . . . . 6  |-  ( A. x ( ph  <->  x  =  y )  ->  ( iota x ph )  =  y )
54eqcomd 2477 . . . . 5  |-  ( A. x ( ph  <->  x  =  y )  ->  y  =  ( iota x ph ) )
6 spsbim 2243 . . . . . . . 8  |-  ( A. x ( ph  ->  ps )  ->  ( [
y  /  x ] ph  ->  [ y  /  x ] ps ) )
7 sbsbc 3259 . . . . . . . 8  |-  ( [ y  /  x ] ph 
<-> 
[. y  /  x ]. ph )
8 sbsbc 3259 . . . . . . . 8  |-  ( [ y  /  x ] ps 
<-> 
[. y  /  x ]. ps )
96, 7, 83imtr3g 277 . . . . . . 7  |-  ( A. x ( ph  ->  ps )  ->  ( [. y  /  x ]. ph  ->  [. y  /  x ]. ps ) )
10 dfsbcq 3257 . . . . . . . 8  |-  ( y  =  ( iota x ph )  ->  ( [. y  /  x ]. ph  <->  [. ( iota
x ph )  /  x ]. ph ) )
11 dfsbcq 3257 . . . . . . . 8  |-  ( y  =  ( iota x ph )  ->  ( [. y  /  x ]. ps  <->  [. ( iota x ph )  /  x ]. ps ) )
1210, 11imbi12d 327 . . . . . . 7  |-  ( y  =  ( iota x ph )  ->  ( (
[. y  /  x ]. ph  ->  [. y  /  x ]. ps )  <->  ( [. ( iota x ph )  /  x ]. ph  ->  [. ( iota x ph )  /  x ]. ps ) ) )
139, 12syl5ib 227 . . . . . 6  |-  ( y  =  ( iota x ph )  ->  ( A. x ( ph  ->  ps )  ->  ( [. ( iota x ph )  /  x ]. ph  ->  [. ( iota x ph )  /  x ]. ps ) ) )
1413com23 80 . . . . 5  |-  ( y  =  ( iota x ph )  ->  ( [. ( iota x ph )  /  x ]. ph  ->  ( A. x ( ph  ->  ps )  ->  [. ( iota x ph )  /  x ]. ps ) ) )
155, 14syl 17 . . . 4  |-  ( A. x ( ph  <->  x  =  y )  ->  ( [. ( iota x ph )  /  x ]. ph  ->  ( A. x ( ph  ->  ps )  ->  [. ( iota x ph )  /  x ]. ps ) ) )
1615exlimiv 1784 . . 3  |-  ( E. y A. x (
ph 
<->  x  =  y )  ->  ( [. ( iota x ph )  /  x ]. ph  ->  ( A. x ( ph  ->  ps )  ->  [. ( iota
x ph )  /  x ]. ps ) ) )
172, 3, 16sylc 61 . 2  |-  ( E! x ph  ->  ( A. x ( ph  ->  ps )  ->  [. ( iota
x ph )  /  x ]. ps ) )
18 iotaexeu 36839 . . . . 5  |-  ( E! x ph  ->  ( iota x ph )  e. 
_V )
1910, 11anbi12d 725 . . . . . . . 8  |-  ( y  =  ( iota x ph )  ->  ( (
[. y  /  x ]. ph  /\  [. y  /  x ]. ps )  <->  (
[. ( iota x ph )  /  x ]. ph  /\  [. ( iota x ph )  /  x ]. ps ) ) )
2019imbi1d 324 . . . . . . 7  |-  ( y  =  ( iota x ph )  ->  ( ( ( [. y  /  x ]. ph  /\  [. y  /  x ]. ps )  ->  E. x ( ph  /\ 
ps ) )  <->  ( ( [. ( iota x ph )  /  x ]. ph  /\  [. ( iota x ph )  /  x ]. ps )  ->  E. x ( ph  /\ 
ps ) ) ) )
21 sbcan 3298 . . . . . . . 8  |-  ( [. y  /  x ]. ( ph  /\  ps )  <->  ( [. y  /  x ]. ph  /\  [. y  /  x ]. ps ) )
22 spesbc 3337 . . . . . . . 8  |-  ( [. y  /  x ]. ( ph  /\  ps )  ->  E. x ( ph  /\  ps ) )
2321, 22sylbir 218 . . . . . . 7  |-  ( (
[. y  /  x ]. ph  /\  [. y  /  x ]. ps )  ->  E. x ( ph  /\ 
ps ) )
2420, 23vtoclg 3093 . . . . . 6  |-  ( ( iota x ph )  e.  _V  ->  ( ( [. ( iota x ph )  /  x ]. ph  /\  [. ( iota x ph )  /  x ]. ps )  ->  E. x ( ph  /\ 
ps ) ) )
2524expd 443 . . . . 5  |-  ( ( iota x ph )  e.  _V  ->  ( [. ( iota x ph )  /  x ]. ph  ->  (
[. ( iota x ph )  /  x ]. ps  ->  E. x
( ph  /\  ps )
) ) )
2618, 3, 25sylc 61 . . . 4  |-  ( E! x ph  ->  ( [. ( iota x ph )  /  x ]. ps  ->  E. x ( ph  /\ 
ps ) ) )
2726anc2li 566 . . 3  |-  ( E! x ph  ->  ( [. ( iota x ph )  /  x ]. ps  ->  ( E! x ph  /\ 
E. x ( ph  /\ 
ps ) ) ) )
28 eupicka 2386 . . 3  |-  ( ( E! x ph  /\  E. x ( ph  /\  ps ) )  ->  A. x
( ph  ->  ps )
)
2927, 28syl6 33 . 2  |-  ( E! x ph  ->  ( [. ( iota x ph )  /  x ]. ps  ->  A. x ( ph  ->  ps ) ) )
3017, 29impbid 195 1  |-  ( E! x ph  ->  ( A. x ( ph  ->  ps )  <->  [. ( iota x ph )  /  x ]. ps ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376   A.wal 1450    = wceq 1452   E.wex 1671   [wsb 1805    e. wcel 1904   E!weu 2319   _Vcvv 3031   [.wsbc 3255   iotacio 5551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ral 2761  df-rex 2762  df-v 3033  df-sbc 3256  df-un 3395  df-sn 3960  df-pr 3962  df-uni 4191  df-iota 5553
This theorem is referenced by:  sbaniota  36856
  Copyright terms: Public domain W3C validator