Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbcssgVD Structured version   Unicode version

Theorem sbcssgVD 34084
Description: Virtual deduction proof of sbcssg 3928. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sbcssg 3928 is sbcssgVD 34084 without virtual deductions and was automatically derived from sbcssgVD 34084.
1::  |-  (. A  e.  B  ->.  A  e.  B ).
2:1:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. y  e.  C  <->  y  e.  [_ A  /  x ]_ C ) ).
3:1:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. y  e.  D  <->  y  e.  [_ A  /  x ]_ D ) ).
4:2,3:  |-  (. A  e.  B  ->.  ( ( [. A  /  x ]. y  e.  C  ->  [. A  /  x ]. y  e.  D )  <->  ( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D  ) ) ).
5:1:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. ( y  e.  C  ->  y  e.  D )  <->  ( [. A  /  x ]. y  e.  C  ->  [. A  /  x ]. y  e.  D ) ) ).
6:4,5:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. ( y  e.  C  ->  y  e.  D )  <->  ( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) ) ).
7:6:  |-  (. A  e.  B  ->.  A. y ( [. A  /  x ]. ( y  e.  C  ->  y  e.  D )  <->  ( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) ) ).
8:7:  |-  (. A  e.  B  ->.  ( A. y [. A  /  x ]. ( y  e.  C  ->  y  e.  D )  <->  A. y ( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D )  ) ).
9:1:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. A. y ( y  e.  C  ->  y  e.  D )  <->  A. y [. A  /  x ]. ( y  e.  C  ->  y  e.  D ) ) ).
10:8,9:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. A. y ( y  e.  C  ->  y  e.  D )  <->  A. y ( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D )  ) ).
11::  |-  ( C  C_  D  <->  A. y ( y  e.  C  ->  y  e.  D ) )
110:11:  |-  A. x ( C  C_  D  <->  A. y ( y  e.  C  ->  y  e.  D ) )
12:1,110:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. C  C_  D  <->  [. A  /  x ]. A. y ( y  e.  C  ->  y  e.  D ) ) ).
13:10,12:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. C  C_  D  <->  A. y ( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) ) ).
14::  |-  ( [_ A  /  x ]_ C  C_  [_ A  /  x ]_ D  <->  A.  y ( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) )
15:13,14:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. C  C_  D  <->  [_ A  /  x ]_ C  C_  [_ A  /  x ]_ D ) ).
qed:15:  |-  ( A  e.  B  ->  ( [. A  /  x ]. C  C_  D  <->  [_  A  /  x ]_ C  C_  [_ A  /  x ]_ D ) )
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sbcssgVD  |-  ( A  e.  B  ->  ( [. A  /  x ]. C  C_  D  <->  [_ A  /  x ]_ C  C_  [_ A  /  x ]_ D ) )

Proof of Theorem sbcssgVD
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 idn1 33745 . . . . . . . . . 10  |-  (. A  e.  B  ->.  A  e.  B ).
2 sbcel2gOLD 33706 . . . . . . . . . 10  |-  ( A  e.  B  ->  ( [. A  /  x ]. y  e.  C  <->  y  e.  [_ A  /  x ]_ C ) )
31, 2e1a 33807 . . . . . . . . 9  |-  (. A  e.  B  ->.  ( [. A  /  x ]. y  e.  C  <->  y  e.  [_ A  /  x ]_ C
) ).
4 sbcel2gOLD 33706 . . . . . . . . . 10  |-  ( A  e.  B  ->  ( [. A  /  x ]. y  e.  D  <->  y  e.  [_ A  /  x ]_ D ) )
51, 4e1a 33807 . . . . . . . . 9  |-  (. A  e.  B  ->.  ( [. A  /  x ]. y  e.  D  <->  y  e.  [_ A  /  x ]_ D
) ).
6 imbi12 320 . . . . . . . . 9  |-  ( (
[. A  /  x ]. y  e.  C  <->  y  e.  [_ A  /  x ]_ C )  -> 
( ( [. A  /  x ]. y  e.  D  <->  y  e.  [_ A  /  x ]_ D
)  ->  ( ( [. A  /  x ]. y  e.  C  ->  [. A  /  x ]. y  e.  D
)  <->  ( y  e. 
[_ A  /  x ]_ C  ->  y  e. 
[_ A  /  x ]_ D ) ) ) )
73, 5, 6e11 33868 . . . . . . . 8  |-  (. A  e.  B  ->.  ( ( [. A  /  x ]. y  e.  C  ->  [. A  /  x ]. y  e.  D )  <->  ( y  e.  [_ A  /  x ]_ C  ->  y  e. 
[_ A  /  x ]_ D ) ) ).
8 sbcimg 3366 . . . . . . . . 9  |-  ( A  e.  B  ->  ( [. A  /  x ]. ( y  e.  C  ->  y  e.  D )  <-> 
( [. A  /  x ]. y  e.  C  ->  [. A  /  x ]. y  e.  D
) ) )
91, 8e1a 33807 . . . . . . . 8  |-  (. A  e.  B  ->.  ( [. A  /  x ]. ( y  e.  C  ->  y  e.  D )  <->  ( [. A  /  x ]. y  e.  C  ->  [. A  /  x ]. y  e.  D ) ) ).
10 bibi1 325 . . . . . . . . 9  |-  ( (
[. A  /  x ]. ( y  e.  C  ->  y  e.  D )  <-> 
( [. A  /  x ]. y  e.  C  ->  [. A  /  x ]. y  e.  D
) )  ->  (
( [. A  /  x ]. ( y  e.  C  ->  y  e.  D )  <-> 
( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) )  <->  ( ( [. A  /  x ]. y  e.  C  ->  [. A  /  x ]. y  e.  D )  <->  ( y  e.  [_ A  /  x ]_ C  ->  y  e. 
[_ A  /  x ]_ D ) ) ) )
1110biimprcd 225 . . . . . . . 8  |-  ( ( ( [. A  /  x ]. y  e.  C  ->  [. A  /  x ]. y  e.  D
)  <->  ( y  e. 
[_ A  /  x ]_ C  ->  y  e. 
[_ A  /  x ]_ D ) )  -> 
( ( [. A  /  x ]. ( y  e.  C  ->  y  e.  D )  <->  ( [. A  /  x ]. y  e.  C  ->  [. A  /  x ]. y  e.  D ) )  -> 
( [. A  /  x ]. ( y  e.  C  ->  y  e.  D )  <-> 
( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) ) ) )
127, 9, 11e11 33868 . . . . . . 7  |-  (. A  e.  B  ->.  ( [. A  /  x ]. ( y  e.  C  ->  y  e.  D )  <->  ( y  e.  [_ A  /  x ]_ C  ->  y  e. 
[_ A  /  x ]_ D ) ) ).
1312gen11 33796 . . . . . 6  |-  (. A  e.  B  ->.  A. y ( [. A  /  x ]. (
y  e.  C  -> 
y  e.  D )  <-> 
( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) ) ).
14 albi 1644 . . . . . 6  |-  ( A. y ( [. A  /  x ]. ( y  e.  C  ->  y  e.  D )  <->  ( y  e.  [_ A  /  x ]_ C  ->  y  e. 
[_ A  /  x ]_ D ) )  -> 
( A. y [. A  /  x ]. (
y  e.  C  -> 
y  e.  D )  <->  A. y ( y  e. 
[_ A  /  x ]_ C  ->  y  e. 
[_ A  /  x ]_ D ) ) )
1513, 14e1a 33807 . . . . 5  |-  (. A  e.  B  ->.  ( A. y [. A  /  x ]. ( y  e.  C  ->  y  e.  D )  <->  A. y ( y  e. 
[_ A  /  x ]_ C  ->  y  e. 
[_ A  /  x ]_ D ) ) ).
16 sbcalgOLD 33703 . . . . . 6  |-  ( A  e.  B  ->  ( [. A  /  x ]. A. y ( y  e.  C  ->  y  e.  D )  <->  A. y [. A  /  x ]. ( y  e.  C  ->  y  e.  D ) ) )
171, 16e1a 33807 . . . . 5  |-  (. A  e.  B  ->.  ( [. A  /  x ]. A. y
( y  e.  C  ->  y  e.  D )  <->  A. y [. A  /  x ]. ( y  e.  C  ->  y  e.  D ) ) ).
18 bibi1 325 . . . . . 6  |-  ( (
[. A  /  x ]. A. y ( y  e.  C  ->  y  e.  D )  <->  A. y [. A  /  x ]. ( y  e.  C  ->  y  e.  D ) )  ->  ( ( [. A  /  x ]. A. y ( y  e.  C  ->  y  e.  D )  <->  A. y
( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) )  <->  ( A. y [. A  /  x ]. ( y  e.  C  ->  y  e.  D )  <->  A. y ( y  e. 
[_ A  /  x ]_ C  ->  y  e. 
[_ A  /  x ]_ D ) ) ) )
1918biimprcd 225 . . . . 5  |-  ( ( A. y [. A  /  x ]. ( y  e.  C  ->  y  e.  D )  <->  A. y
( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) )  ->  ( ( [. A  /  x ]. A. y ( y  e.  C  ->  y  e.  D )  <->  A. y [. A  /  x ]. ( y  e.  C  ->  y  e.  D ) )  ->  ( [. A  /  x ]. A. y ( y  e.  C  ->  y  e.  D )  <->  A. y
( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) ) ) )
2015, 17, 19e11 33868 . . . 4  |-  (. A  e.  B  ->.  ( [. A  /  x ]. A. y
( y  e.  C  ->  y  e.  D )  <->  A. y ( y  e. 
[_ A  /  x ]_ C  ->  y  e. 
[_ A  /  x ]_ D ) ) ).
21 dfss2 3478 . . . . . 6  |-  ( C 
C_  D  <->  A. y
( y  e.  C  ->  y  e.  D ) )
2221ax-gen 1623 . . . . 5  |-  A. x
( C  C_  D  <->  A. y ( y  e.  C  ->  y  e.  D ) )
23 sbcbi 33700 . . . . 5  |-  ( A  e.  B  ->  ( A. x ( C  C_  D 
<-> 
A. y ( y  e.  C  ->  y  e.  D ) )  -> 
( [. A  /  x ]. C  C_  D  <->  [. A  /  x ]. A. y ( y  e.  C  -> 
y  e.  D ) ) ) )
241, 22, 23e10 33874 . . . 4  |-  (. A  e.  B  ->.  ( [. A  /  x ]. C  C_  D 
<-> 
[. A  /  x ]. A. y ( y  e.  C  ->  y  e.  D ) ) ).
25 bibi1 325 . . . . 5  |-  ( (
[. A  /  x ]. C  C_  D  <->  [. A  /  x ]. A. y ( y  e.  C  -> 
y  e.  D ) )  ->  ( ( [. A  /  x ]. C  C_  D  <->  A. y
( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) )  <->  ( [. A  /  x ]. A. y
( y  e.  C  ->  y  e.  D )  <->  A. y ( y  e. 
[_ A  /  x ]_ C  ->  y  e. 
[_ A  /  x ]_ D ) ) ) )
2625biimprcd 225 . . . 4  |-  ( (
[. A  /  x ]. A. y ( y  e.  C  ->  y  e.  D )  <->  A. y
( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) )  ->  ( ( [. A  /  x ]. C  C_  D  <->  [. A  /  x ]. A. y ( y  e.  C  -> 
y  e.  D ) )  ->  ( [. A  /  x ]. C  C_  D  <->  A. y ( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) ) ) )
2720, 24, 26e11 33868 . . 3  |-  (. A  e.  B  ->.  ( [. A  /  x ]. C  C_  D 
<-> 
A. y ( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) ) ).
28 dfss2 3478 . . 3  |-  ( [_ A  /  x ]_ C  C_ 
[_ A  /  x ]_ D  <->  A. y ( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) )
29 biantr 929 . . . 4  |-  ( ( ( [. A  /  x ]. C  C_  D  <->  A. y ( y  e. 
[_ A  /  x ]_ C  ->  y  e. 
[_ A  /  x ]_ D ) )  /\  ( [_ A  /  x ]_ C  C_  [_ A  /  x ]_ D  <->  A. y
( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) ) )  ->  ( [. A  /  x ]. C  C_  D  <->  [_ A  /  x ]_ C  C_  [_ A  /  x ]_ D ) )
3029ex 432 . . 3  |-  ( (
[. A  /  x ]. C  C_  D  <->  A. y
( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) )  ->  ( ( [_ A  /  x ]_ C  C_  [_ A  /  x ]_ D  <->  A. y
( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) )  ->  ( [. A  /  x ]. C  C_  D  <->  [_ A  /  x ]_ C  C_  [_ A  /  x ]_ D ) ) )
3127, 28, 30e10 33874 . 2  |-  (. A  e.  B  ->.  ( [. A  /  x ]. C  C_  D 
<-> 
[_ A  /  x ]_ C  C_  [_ A  /  x ]_ D ) ).
3231in1 33742 1  |-  ( A  e.  B  ->  ( [. A  /  x ]. C  C_  D  <->  [_ A  /  x ]_ C  C_  [_ A  /  x ]_ D ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184   A.wal 1396    e. wcel 1823   [.wsbc 3324   [_csb 3420    C_ wss 3461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-v 3108  df-sbc 3325  df-csb 3421  df-in 3468  df-ss 3475  df-vd1 33741
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator