Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbcssOLD Structured version   Unicode version

Theorem sbcssOLD 36878
Description: Distribute proper substitution through a subclass relation. This theorem was automatically derived from sbcssgVD 37254. (Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sbcssOLD  |-  ( A  e.  B  ->  ( [. A  /  x ]. C  C_  D  <->  [_ A  /  x ]_ C  C_  [_ A  /  x ]_ D ) )

Proof of Theorem sbcssOLD
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfss2 3453 . . . 4  |-  ( C 
C_  D  <->  A. y
( y  e.  C  ->  y  e.  D ) )
21sbcbiiOLD 36863 . . 3  |-  ( A  e.  B  ->  ( [. A  /  x ]. C  C_  D  <->  [. A  /  x ]. A. y ( y  e.  C  -> 
y  e.  D ) ) )
3 sbcalgOLD 36874 . . . 4  |-  ( A  e.  B  ->  ( [. A  /  x ]. A. y ( y  e.  C  ->  y  e.  D )  <->  A. y [. A  /  x ]. ( y  e.  C  ->  y  e.  D ) ) )
4 sbcimg 3341 . . . . . . 7  |-  ( A  e.  B  ->  ( [. A  /  x ]. ( y  e.  C  ->  y  e.  D )  <-> 
( [. A  /  x ]. y  e.  C  ->  [. A  /  x ]. y  e.  D
) ) )
5 sbcel2gOLD 36877 . . . . . . . 8  |-  ( A  e.  B  ->  ( [. A  /  x ]. y  e.  C  <->  y  e.  [_ A  /  x ]_ C ) )
6 sbcel2gOLD 36877 . . . . . . . 8  |-  ( A  e.  B  ->  ( [. A  /  x ]. y  e.  D  <->  y  e.  [_ A  /  x ]_ D ) )
75, 6imbi12d 321 . . . . . . 7  |-  ( A  e.  B  ->  (
( [. A  /  x ]. y  e.  C  ->  [. A  /  x ]. y  e.  D
)  <->  ( y  e. 
[_ A  /  x ]_ C  ->  y  e. 
[_ A  /  x ]_ D ) ) )
84, 7bitrd 256 . . . . . 6  |-  ( A  e.  B  ->  ( [. A  /  x ]. ( y  e.  C  ->  y  e.  D )  <-> 
( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) ) )
98alrimiv 1767 . . . . 5  |-  ( A  e.  B  ->  A. y
( [. A  /  x ]. ( y  e.  C  ->  y  e.  D )  <-> 
( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) ) )
10 albi 1684 . . . . 5  |-  ( A. y ( [. A  /  x ]. ( y  e.  C  ->  y  e.  D )  <->  ( y  e.  [_ A  /  x ]_ C  ->  y  e. 
[_ A  /  x ]_ D ) )  -> 
( A. y [. A  /  x ]. (
y  e.  C  -> 
y  e.  D )  <->  A. y ( y  e. 
[_ A  /  x ]_ C  ->  y  e. 
[_ A  /  x ]_ D ) ) )
119, 10syl 17 . . . 4  |-  ( A  e.  B  ->  ( A. y [. A  /  x ]. ( y  e.  C  ->  y  e.  D )  <->  A. y
( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) ) )
123, 11bitrd 256 . . 3  |-  ( A  e.  B  ->  ( [. A  /  x ]. A. y ( y  e.  C  ->  y  e.  D )  <->  A. y
( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) ) )
132, 12bitrd 256 . 2  |-  ( A  e.  B  ->  ( [. A  /  x ]. C  C_  D  <->  A. y
( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) ) )
14 dfss2 3453 . 2  |-  ( [_ A  /  x ]_ C  C_ 
[_ A  /  x ]_ D  <->  A. y ( y  e.  [_ A  /  x ]_ C  ->  y  e.  [_ A  /  x ]_ D ) )
1513, 14syl6bbr 266 1  |-  ( A  e.  B  ->  ( [. A  /  x ]. C  C_  D  <->  [_ A  /  x ]_ C  C_  [_ A  /  x ]_ D ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187   A.wal 1435    e. wcel 1872   [.wsbc 3299   [_csb 3395    C_ wss 3436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-v 3082  df-sbc 3300  df-csb 3396  df-in 3443  df-ss 3450
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator