Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcrex Structured version   Unicode version

Theorem sbcrex 3416
 Description: Interchange class substitution and restricted existential quantifier. (Contributed by NM, 15-Nov-2005.) (Revised by NM, 18-Aug-2018.)
Assertion
Ref Expression
sbcrex
Distinct variable groups:   ,   ,   ,
Allowed substitution hints:   (,)   ()   ()

Proof of Theorem sbcrex
StepHypRef Expression
1 nfcv 2629 . 2
2 sbcrext 3414 . 2
31, 2ax-mp 5 1
 Colors of variables: wff setvar class Syntax hints:   wb 184  wnfc 2615  wrex 2815  wsbc 3331 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ral 2819  df-rex 2820  df-v 3115  df-sbc 3332 This theorem is referenced by:  ac6sfi  7760  csbwrdg  12532  rexfiuz  13139  2sbcrex  30322  sbc2rex  30324  4rexfrabdioph  30335
 Copyright terms: Public domain W3C validator