Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbcoreleleqVD Structured version   Unicode version

Theorem sbcoreleleqVD 33527
Description: Virtual deduction proof of sbcoreleleq 33174. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
1::  |-  (. A  e.  B  ->.  A  e.  B ).
2:1,?: e1a 33281  |-  (. A  e.  B  ->.  ( [. A  /  y ]. x  e.  y  <->  x  e.  A ) ).
3:1,?: e1a 33281  |-  (. A  e.  B  ->.  ( [. A  /  y ]. y  e.  x  <->  A  e.  x ) ).
4:1,?: e1a 33281  |-  (. A  e.  B  ->.  ( [. A  /  y ]. x  =  y  <->  x  =  A ) ).
5:2,3,4,?: e111 33328  |-  (. A  e.  B  ->.  ( ( x  e.  A  \/  A  e.  x  \/  x  =  A )  <->  ( [. A  /  y ]. x  e.  y  \/  [. A  /  y ]. y  e.  x  \/  [. A  /  y ]. x  =  y ) ) ).
6:1,?: e1a 33281  |-  (. A  e.  B  ->.  ( [. A  /  y ]. ( x  e.  y  \/  y  e.  x  \/  x  =  y )  <->  ( [. A  /  y ]. x  e.  y  \/  [. A  /  y ]. y  e.  x  \/  [. A  /  y ]. x  =  y ) ) ).
7:5,6: e11 33342  |-  (. A  e.  B  ->.  ( [. A  /  y ]. ( x  e.  y  \/  y  e.  x  \/  x  =  y )  <->  ( x  e.  A  \/  A  e.  x  \/  x  =  A ) ) ).
qed:7:  |-  ( A  e.  B  ->  ( [. A  /  y ]. ( x  e.  y  \/  y  e.  x  \/  x  =  y )  <->  ( x  e.  A  \/  A  e.  x  \/  x  =  A ) ) )
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sbcoreleleqVD  |-  ( A  e.  B  ->  ( [. A  /  y ]. ( x  e.  y  \/  y  e.  x  \/  x  =  y
)  <->  ( x  e.  A  \/  A  e.  x  \/  x  =  A ) ) )
Distinct variable groups:    y, A    x, y
Allowed substitution hints:    A( x)    B( x, y)

Proof of Theorem sbcoreleleqVD
StepHypRef Expression
1 idn1 33219 . . . . 5  |-  (. A  e.  B  ->.  A  e.  B ).
2 sbcel2gv 3380 . . . . 5  |-  ( A  e.  B  ->  ( [. A  /  y ]. x  e.  y  <->  x  e.  A ) )
31, 2e1a 33281 . . . 4  |-  (. A  e.  B  ->.  ( [. A  /  y ]. x  e.  y  <->  x  e.  A
) ).
4 sbcel1gvOLD 3379 . . . . 5  |-  ( A  e.  B  ->  ( [. A  /  y ]. y  e.  x  <->  A  e.  x ) )
51, 4e1a 33281 . . . 4  |-  (. A  e.  B  ->.  ( [. A  /  y ]. y  e.  x  <->  A  e.  x
) ).
6 eqsbc3r 3375 . . . . 5  |-  ( A  e.  B  ->  ( [. A  /  y ]. x  =  y  <->  x  =  A ) )
71, 6e1a 33281 . . . 4  |-  (. A  e.  B  ->.  ( [. A  /  y ]. x  =  y  <->  x  =  A
) ).
8 3orbi123 33149 . . . . 5  |-  ( ( ( [. A  / 
y ]. x  e.  y  <-> 
x  e.  A )  /\  ( [. A  /  y ]. y  e.  x  <->  A  e.  x
)  /\  ( [. A  /  y ]. x  =  y  <->  x  =  A
) )  ->  (
( [. A  /  y ]. x  e.  y  \/  [. A  /  y ]. y  e.  x  \/  [. A  /  y ]. x  =  y
)  <->  ( x  e.  A  \/  A  e.  x  \/  x  =  A ) ) )
983impexpbicomi 33090 . . . 4  |-  ( (
[. A  /  y ]. x  e.  y  <->  x  e.  A )  -> 
( ( [. A  /  y ]. y  e.  x  <->  A  e.  x
)  ->  ( ( [. A  /  y ]. x  =  y  <->  x  =  A )  -> 
( ( x  e.  A  \/  A  e.  x  \/  x  =  A )  <->  ( [. A  /  y ]. x  e.  y  \/  [. A  /  y ]. y  e.  x  \/  [. A  /  y ]. x  =  y ) ) ) ) )
103, 5, 7, 9e111 33328 . . 3  |-  (. A  e.  B  ->.  ( ( x  e.  A  \/  A  e.  x  \/  x  =  A )  <->  ( [. A  /  y ]. x  e.  y  \/  [. A  /  y ]. y  e.  x  \/  [. A  /  y ]. x  =  y ) ) ).
11 sbc3orgOLD 33171 . . . 4  |-  ( A  e.  B  ->  ( [. A  /  y ]. ( x  e.  y  \/  y  e.  x  \/  x  =  y
)  <->  ( [. A  /  y ]. x  e.  y  \/  [. A  /  y ]. y  e.  x  \/  [. A  /  y ]. x  =  y ) ) )
121, 11e1a 33281 . . 3  |-  (. A  e.  B  ->.  ( [. A  /  y ]. (
x  e.  y  \/  y  e.  x  \/  x  =  y )  <-> 
( [. A  /  y ]. x  e.  y  \/  [. A  /  y ]. y  e.  x  \/  [. A  /  y ]. x  =  y
) ) ).
13 biantr 931 . . . 4  |-  ( ( ( [. A  / 
y ]. ( x  e.  y  \/  y  e.  x  \/  x  =  y )  <->  ( [. A  /  y ]. x  e.  y  \/  [. A  /  y ]. y  e.  x  \/  [. A  /  y ]. x  =  y ) )  /\  ( ( x  e.  A  \/  A  e.  x  \/  x  =  A )  <->  ( [. A  /  y ]. x  e.  y  \/  [. A  /  y ]. y  e.  x  \/  [. A  /  y ]. x  =  y ) ) )  ->  ( [. A  /  y ]. (
x  e.  y  \/  y  e.  x  \/  x  =  y )  <-> 
( x  e.  A  \/  A  e.  x  \/  x  =  A
) ) )
1413expcom 435 . . 3  |-  ( ( ( x  e.  A  \/  A  e.  x  \/  x  =  A
)  <->  ( [. A  /  y ]. x  e.  y  \/  [. A  /  y ]. y  e.  x  \/  [. A  /  y ]. x  =  y ) )  ->  ( ( [. A  /  y ]. (
x  e.  y  \/  y  e.  x  \/  x  =  y )  <-> 
( [. A  /  y ]. x  e.  y  \/  [. A  /  y ]. y  e.  x  \/  [. A  /  y ]. x  =  y
) )  ->  ( [. A  /  y ]. ( x  e.  y  \/  y  e.  x  \/  x  =  y
)  <->  ( x  e.  A  \/  A  e.  x  \/  x  =  A ) ) ) )
1510, 12, 14e11 33342 . 2  |-  (. A  e.  B  ->.  ( [. A  /  y ]. (
x  e.  y  \/  y  e.  x  \/  x  =  y )  <-> 
( x  e.  A  \/  A  e.  x  \/  x  =  A
) ) ).
1615in1 33216 1  |-  ( A  e.  B  ->  ( [. A  /  y ]. ( x  e.  y  \/  y  e.  x  \/  x  =  y
)  <->  ( x  e.  A  \/  A  e.  x  \/  x  =  A ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ w3o 973    = wceq 1383    e. wcel 1804   [.wsbc 3313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-clab 2429  df-cleq 2435  df-clel 2438  df-v 3097  df-sbc 3314  df-vd1 33215
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator