MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbco2 Structured version   Unicode version

Theorem sbco2 2134
Description: A composition law for substitution. (Contributed by NM, 30-Jun-1994.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Wolf Lammen, 17-Sep-2018.)
Hypothesis
Ref Expression
sbco2.1  |-  F/ z
ph
Assertion
Ref Expression
sbco2  |-  ( [ y  /  z ] [ z  /  x ] ph  <->  [ y  /  x ] ph )

Proof of Theorem sbco2
StepHypRef Expression
1 sbequ12 1961 . . . 4  |-  ( z  =  y  ->  ( [ z  /  x ] ph  <->  [ y  /  z ] [ z  /  x ] ph ) )
2 sbequ 2090 . . . 4  |-  ( z  =  y  ->  ( [ z  /  x ] ph  <->  [ y  /  x ] ph ) )
31, 2bitr3d 255 . . 3  |-  ( z  =  y  ->  ( [ y  /  z ] [ z  /  x ] ph  <->  [ y  /  x ] ph ) )
43sps 1814 . 2  |-  ( A. z  z  =  y  ->  ( [ y  / 
z ] [ z  /  x ] ph  <->  [ y  /  x ] ph ) )
5 nfna1 1851 . . 3  |-  F/ z  -.  A. z  z  =  y
6 sbco2.1 . . . 4  |-  F/ z
ph
76nfsb4 2104 . . 3  |-  ( -. 
A. z  z  =  y  ->  F/ z [ y  /  x ] ph )
82a1i 11 . . 3  |-  ( -. 
A. z  z  =  y  ->  ( z  =  y  ->  ( [ z  /  x ] ph 
<->  [ y  /  x ] ph ) ) )
95, 7, 8sbied 2125 . 2  |-  ( -. 
A. z  z  =  y  ->  ( [
y  /  z ] [ z  /  x ] ph  <->  [ y  /  x ] ph ) )
104, 9pm2.61i 164 1  |-  ( [ y  /  z ] [ z  /  x ] ph  <->  [ y  /  x ] ph )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184   A.wal 1377   F/wnf 1599   [wsb 1711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-ex 1597  df-nf 1600  df-sb 1712
This theorem is referenced by:  sbco2d  2136  equsb3ALT  2160  elsb3  2161  elsb4  2162  sb7f  2185  sbco4lem  2200  sbco4  2201  2eu6OLD  2394  eqsb3  2587  clelsb3  2588  cbvab  2608  sbralie  3101  sbcco  3354  clelsb3f  27071  bj-clelsb3  33514
  Copyright terms: Public domain W3C validator