MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbco Structured version   Unicode version

Theorem sbco 2210
Description: A composition law for substitution. (Contributed by NM, 14-May-1993.) (Proof shortened by Wolf Lammen, 21-Sep-2018.)
Assertion
Ref Expression
sbco  |-  ( [ y  /  x ] [ x  /  y ] ph  <->  [ y  /  x ] ph )

Proof of Theorem sbco
StepHypRef Expression
1 sbcom3 2209 . 2  |-  ( [ y  /  x ] [ x  /  y ] ph  <->  [ y  /  x ] [ y  /  y ] ph )
2 sbid 2054 . . 3  |-  ( [ y  /  y ]
ph 
<-> 
ph )
32sbbii 1797 . 2  |-  ( [ y  /  x ] [ y  /  y ] ph  <->  [ y  /  x ] ph )
41, 3bitri 252 1  |-  ( [ y  /  x ] [ x  /  y ] ph  <->  [ y  /  x ] ph )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 187   [wsb 1790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-10 1891  ax-12 1909  ax-13 2057
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-ex 1658  df-nf 1662  df-sb 1791
This theorem is referenced by:  sbid2  2211  sbco3  2215  sb6a  2247
  Copyright terms: Public domain W3C validator