Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcne12 Structured version   Visualization version   Unicode version

Theorem sbcne12 3774
 Description: Distribute proper substitution through an inequality. (Contributed by Andrew Salmon, 18-Jun-2011.) (Revised by NM, 18-Aug-2018.)
Assertion
Ref Expression
sbcne12

Proof of Theorem sbcne12
StepHypRef Expression
1 nne 2627 . . . . . 6
21sbcbii 3322 . . . . 5
32a1i 11 . . . 4
4 sbcng 3307 . . . 4
5 sbceqg 3772 . . . . 5
6 nne 2627 . . . . 5
75, 6syl6bbr 267 . . . 4
83, 4, 73bitr3d 287 . . 3
98con4bid 295 . 2
10 sbcex 3276 . . . 4
1110con3i 141 . . 3
12 csbprc 3769 . . . . 5
13 csbprc 3769 . . . . 5
1412, 13eqtr4d 2487 . . . 4
1514, 6sylibr 216 . . 3
1611, 152falsed 353 . 2
179, 16pm2.61i 168 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wb 188   wceq 1443   wcel 1886   wne 2621  cvv 3044  wsbc 3266  csb 3362  c0 3730 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430 This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-tru 1446  df-fal 1449  df-ex 1663  df-nf 1667  df-sb 1797  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2580  df-ne 2623  df-v 3046  df-sbc 3267  df-csb 3363  df-dif 3406  df-in 3410  df-ss 3417  df-nul 3731 This theorem is referenced by:  disjdsct  28276  cdlemkid3N  34494  cdlemkid4  34495
 Copyright terms: Public domain W3C validator