Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbcim2gVD Structured version   Unicode version

Theorem sbcim2gVD 31445
Description: Distribution of class substitution over a left-nested implication. Similar to sbcimg 3225. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sbcim2g 31078 is sbcim2gVD 31445 without virtual deductions and was automatically derived from sbcim2gVD 31445.
1::  |-  (. A  e.  B  ->.  A  e.  B ).
2::  |-  (. A  e.  B ,. [. A  /  x ]. ( ph  ->  ( ps  ->  ch ) )  ->.  [. A  /  x ]. ( ph  ->  ( ps  ->  ch ) ) ).
3:1,2:  |-  (. A  e.  B ,. [. A  /  x ]. ( ph  ->  ( ps  ->  ch ) )  ->.  ( [. A  /  x ]. ph  ->  [. A  /  x ]. ( ps  ->  ch ) ) ).
4:1:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. ( ps  ->  ch )  <->  ( [. A  /  x ]. ps  ->  [. A  /  x ]. ch ) ) ).
5:3,4:  |-  (. A  e.  B ,. [. A  /  x ]. ( ph  ->  ( ps  ->  ch ) )  ->.  ( [. A  /  x ]. ph  ->  ( [. A  /  x ]. ps  ->  [. A  /  x ]. ch ) ) ).
6:5:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. ( ph  ->  ( ps  ->  ch ) )  ->  ( [. A  /  x ]. ph  ->  ( [. A  /  x ]. ps  ->  [. A  /  x ]. ch ) ) ) ).
7::  |-  (. A  e.  B ,. ( [. A  /  x ]. ph  ->  ( [. A  /  x ]. ps  ->  [. A  /  x ]. ch ) )  ->.  ( [. A  /  x ]. ph  ->  ( [. A  /  x ]. ps  ->  [. A  /  x ]. ch ) ) ).
8:4,7:  |-  (. A  e.  B ,. ( [. A  /  x ]. ph  ->  ( [. A  /  x ]. ps  ->  [. A  /  x ]. ch ) )  ->.  ( [. A  /  x ]. ph  ->  [. A  /  x ]. ( ps  ->  ch ) ) ).
9:1:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. ( ph  ->  ( ps  ->  ch ) )  <->  ( [. A  /  x ]. ph  ->  [. A  /  x ]. ( ps  ->  ch ) ) ) ).
10:8,9:  |-  (. A  e.  B ,. ( [. A  /  x ]. ph  ->  ( [. A  /  x ]. ps  ->  [. A  /  x ]. ch ) )  ->.  [. A  /  x ]. ( ph  ->  ( ps  ->  ch ) ) ).
11:10:  |-  (. A  e.  B  ->.  ( ( [. A  /  x ]. ph  ->  ( [. A  /  x ]. ps  ->  [. A  /  x ]. ch ) )  ->  [. A  /  x ]. ( ph  ->  ( ps  ->  ch ) ) ) ).
12:6,11:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. ( ph  ->  ( ps  ->  ch ) )  <->  ( [. A  /  x ]. ph  ->  ( [. A  /  x ]. ps  ->  [. A  /  x ]. ch ) ) ) ).
qed:12:  |-  ( A  e.  B  ->  ( [. A  /  x ]. ( ph  ->  ( ps  ->  ch ) )  <->  ( [. A  /  x ]. ph  ->  ( [. A  /  x ]. ps  ->  [. A  /  x ]. ch ) ) ) )
(Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sbcim2gVD  |-  ( A  e.  B  ->  ( [. A  /  x ]. ( ph  ->  ( ps  ->  ch ) )  <-> 
( [. A  /  x ]. ph  ->  ( [. A  /  x ]. ps  ->  [. A  /  x ]. ch ) ) ) )

Proof of Theorem sbcim2gVD
StepHypRef Expression
1 idn1 31120 . . . . . 6  |-  (. A  e.  B  ->.  A  e.  B ).
2 idn2 31169 . . . . . 6  |-  (. A  e.  B ,. [. A  /  x ]. ( ph  ->  ( ps  ->  ch ) )  ->.  [. A  /  x ]. ( ph  ->  ( ps  ->  ch )
) ).
3 sbcimg 3225 . . . . . . 7  |-  ( A  e.  B  ->  ( [. A  /  x ]. ( ph  ->  ( ps  ->  ch ) )  <-> 
( [. A  /  x ]. ph  ->  [. A  /  x ]. ( ps  ->  ch ) ) ) )
43biimpd 207 . . . . . 6  |-  ( A  e.  B  ->  ( [. A  /  x ]. ( ph  ->  ( ps  ->  ch ) )  ->  ( [. A  /  x ]. ph  ->  [. A  /  x ]. ( ps  ->  ch )
) ) )
51, 2, 4e12 31291 . . . . 5  |-  (. A  e.  B ,. [. A  /  x ]. ( ph  ->  ( ps  ->  ch ) )  ->.  ( [. A  /  x ]. ph  ->  [. A  /  x ]. ( ps  ->  ch )
) ).
6 sbcimg 3225 . . . . . 6  |-  ( A  e.  B  ->  ( [. A  /  x ]. ( ps  ->  ch ) 
<->  ( [. A  /  x ]. ps  ->  [. A  /  x ]. ch )
) )
71, 6e1_ 31183 . . . . 5  |-  (. A  e.  B  ->.  ( [. A  /  x ]. ( ps 
->  ch )  <->  ( [. A  /  x ]. ps  ->  [. A  /  x ]. ch ) ) ).
8 imbi2 324 . . . . . 6  |-  ( (
[. A  /  x ]. ( ps  ->  ch ) 
<->  ( [. A  /  x ]. ps  ->  [. A  /  x ]. ch )
)  ->  ( ( [. A  /  x ]. ph  ->  [. A  /  x ]. ( ps  ->  ch ) )  <->  ( [. A  /  x ]. ph  ->  (
[. A  /  x ]. ps  ->  [. A  /  x ]. ch ) ) ) )
98biimpcd 224 . . . . 5  |-  ( (
[. A  /  x ]. ph  ->  [. A  /  x ]. ( ps  ->  ch ) )  ->  (
( [. A  /  x ]. ( ps  ->  ch ) 
<->  ( [. A  /  x ]. ps  ->  [. A  /  x ]. ch )
)  ->  ( [. A  /  x ]. ph  ->  (
[. A  /  x ]. ps  ->  [. A  /  x ]. ch ) ) ) )
105, 7, 9e21 31297 . . . 4  |-  (. A  e.  B ,. [. A  /  x ]. ( ph  ->  ( ps  ->  ch ) )  ->.  ( [. A  /  x ]. ph  ->  (
[. A  /  x ]. ps  ->  [. A  /  x ]. ch ) ) ).
1110in2 31161 . . 3  |-  (. A  e.  B  ->.  ( [. A  /  x ]. ( ph  ->  ( ps  ->  ch ) )  ->  ( [. A  /  x ]. ph  ->  ( [. A  /  x ]. ps  ->  [. A  /  x ]. ch ) ) ) ).
12 idn2 31169 . . . . . 6  |-  (. A  e.  B ,. ( [. A  /  x ]. ph  ->  (
[. A  /  x ]. ps  ->  [. A  /  x ]. ch ) )  ->.  ( [. A  /  x ]. ph  ->  ( [. A  /  x ]. ps  ->  [. A  /  x ]. ch ) ) ).
13 bi2 198 . . . . . . 7  |-  ( (
[. A  /  x ]. ( ps  ->  ch ) 
<->  ( [. A  /  x ]. ps  ->  [. A  /  x ]. ch )
)  ->  ( ( [. A  /  x ]. ps  ->  [. A  /  x ]. ch )  ->  [. A  /  x ]. ( ps  ->  ch ) ) )
1413imim2d 52 . . . . . 6  |-  ( (
[. A  /  x ]. ( ps  ->  ch ) 
<->  ( [. A  /  x ]. ps  ->  [. A  /  x ]. ch )
)  ->  ( ( [. A  /  x ]. ph  ->  ( [. A  /  x ]. ps  ->  [. A  /  x ]. ch ) )  -> 
( [. A  /  x ]. ph  ->  [. A  /  x ]. ( ps  ->  ch ) ) ) )
157, 12, 14e12 31291 . . . . 5  |-  (. A  e.  B ,. ( [. A  /  x ]. ph  ->  (
[. A  /  x ]. ps  ->  [. A  /  x ]. ch ) )  ->.  ( [. A  /  x ]. ph  ->  [. A  /  x ]. ( ps  ->  ch ) ) ).
161, 3e1_ 31183 . . . . 5  |-  (. A  e.  B  ->.  ( [. A  /  x ]. ( ph  ->  ( ps  ->  ch ) )  <->  ( [. A  /  x ]. ph  ->  [. A  /  x ]. ( ps  ->  ch )
) ) ).
17 bi2 198 . . . . . 6  |-  ( (
[. A  /  x ]. ( ph  ->  ( ps  ->  ch ) )  <-> 
( [. A  /  x ]. ph  ->  [. A  /  x ]. ( ps  ->  ch ) ) )  -> 
( ( [. A  /  x ]. ph  ->  [. A  /  x ]. ( ps  ->  ch )
)  ->  [. A  /  x ]. ( ph  ->  ( ps  ->  ch )
) ) )
1817com12 31 . . . . 5  |-  ( (
[. A  /  x ]. ph  ->  [. A  /  x ]. ( ps  ->  ch ) )  ->  (
( [. A  /  x ]. ( ph  ->  ( ps  ->  ch ) )  <-> 
( [. A  /  x ]. ph  ->  [. A  /  x ]. ( ps  ->  ch ) ) )  ->  [. A  /  x ]. ( ph  ->  ( ps  ->  ch ) ) ) )
1915, 16, 18e21 31297 . . . 4  |-  (. A  e.  B ,. ( [. A  /  x ]. ph  ->  (
[. A  /  x ]. ps  ->  [. A  /  x ]. ch ) )  ->.  [. A  /  x ]. ( ph  ->  ( ps  ->  ch ) ) ).
2019in2 31161 . . 3  |-  (. A  e.  B  ->.  ( ( [. A  /  x ]. ph  ->  (
[. A  /  x ]. ps  ->  [. A  /  x ]. ch ) )  ->  [. A  /  x ]. ( ph  ->  ( ps  ->  ch ) ) ) ).
21 bi3 187 . . 3  |-  ( (
[. A  /  x ]. ( ph  ->  ( ps  ->  ch ) )  ->  ( [. A  /  x ]. ph  ->  (
[. A  /  x ]. ps  ->  [. A  /  x ]. ch ) ) )  ->  ( (
( [. A  /  x ]. ph  ->  ( [. A  /  x ]. ps  ->  [. A  /  x ]. ch ) )  ->  [. A  /  x ]. ( ph  ->  ( ps  ->  ch ) ) )  ->  ( [. A  /  x ]. ( ph  ->  ( ps  ->  ch ) )  <->  ( [. A  /  x ]. ph  ->  (
[. A  /  x ]. ps  ->  [. A  /  x ]. ch ) ) ) ) )
2211, 20, 21e11 31244 . 2  |-  (. A  e.  B  ->.  ( [. A  /  x ]. ( ph  ->  ( ps  ->  ch ) )  <->  ( [. A  /  x ]. ph  ->  (
[. A  /  x ]. ps  ->  [. A  /  x ]. ch ) ) ) ).
2322in1 31117 1  |-  ( A  e.  B  ->  ( [. A  /  x ]. ( ph  ->  ( ps  ->  ch ) )  <-> 
( [. A  /  x ]. ph  ->  ( [. A  /  x ]. ps  ->  [. A  /  x ]. ch ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    e. wcel 1761   [.wsbc 3183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-10 1780  ax-12 1797  ax-13 1948  ax-ext 2422
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-ex 1592  df-nf 1595  df-sb 1706  df-clab 2428  df-cleq 2434  df-clel 2437  df-v 2972  df-sbc 3184  df-vd1 31116  df-vd2 31125
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator