Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbcim2gVD Structured version   Unicode version

Theorem sbcim2gVD 33776
Description: Distribution of class substitution over a left-nested implication. Similar to sbcimg 3369. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sbcim2g 33410 is sbcim2gVD 33776 without virtual deductions and was automatically derived from sbcim2gVD 33776.
1::  |-  (. A  e.  B  ->.  A  e.  B ).
2::  |-  (. A  e.  B ,. [. A  /  x ]. ( ph  ->  ( ps  ->  ch ) )  ->.  [. A  /  x ]. ( ph  ->  ( ps  ->  ch ) ) ).
3:1,2:  |-  (. A  e.  B ,. [. A  /  x ]. ( ph  ->  ( ps  ->  ch ) )  ->.  ( [. A  /  x ]. ph  ->  [. A  /  x ]. ( ps  ->  ch ) ) ).
4:1:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. ( ps  ->  ch )  <->  ( [. A  /  x ]. ps  ->  [. A  /  x ]. ch ) ) ).
5:3,4:  |-  (. A  e.  B ,. [. A  /  x ]. ( ph  ->  ( ps  ->  ch ) )  ->.  ( [. A  /  x ]. ph  ->  ( [. A  /  x ]. ps  ->  [. A  /  x ]. ch ) ) ).
6:5:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. ( ph  ->  ( ps  ->  ch ) )  ->  ( [. A  /  x ]. ph  ->  ( [. A  /  x ]. ps  ->  [. A  /  x ]. ch ) ) ) ).
7::  |-  (. A  e.  B ,. ( [. A  /  x ]. ph  ->  ( [. A  /  x ]. ps  ->  [. A  /  x ]. ch ) )  ->.  ( [. A  /  x ]. ph  ->  ( [. A  /  x ]. ps  ->  [. A  /  x ]. ch ) ) ).
8:4,7:  |-  (. A  e.  B ,. ( [. A  /  x ]. ph  ->  ( [. A  /  x ]. ps  ->  [. A  /  x ]. ch ) )  ->.  ( [. A  /  x ]. ph  ->  [. A  /  x ]. ( ps  ->  ch ) ) ).
9:1:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. ( ph  ->  ( ps  ->  ch ) )  <->  ( [. A  /  x ]. ph  ->  [. A  /  x ]. ( ps  ->  ch ) ) ) ).
10:8,9:  |-  (. A  e.  B ,. ( [. A  /  x ]. ph  ->  ( [. A  /  x ]. ps  ->  [. A  /  x ]. ch ) )  ->.  [. A  /  x ]. ( ph  ->  ( ps  ->  ch ) ) ).
11:10:  |-  (. A  e.  B  ->.  ( ( [. A  /  x ]. ph  ->  ( [. A  /  x ]. ps  ->  [. A  /  x ]. ch ) )  ->  [. A  /  x ]. ( ph  ->  ( ps  ->  ch ) ) ) ).
12:6,11:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. ( ph  ->  ( ps  ->  ch ) )  <->  ( [. A  /  x ]. ph  ->  ( [. A  /  x ]. ps  ->  [. A  /  x ]. ch ) ) ) ).
qed:12:  |-  ( A  e.  B  ->  ( [. A  /  x ]. ( ph  ->  ( ps  ->  ch ) )  <->  ( [. A  /  x ]. ph  ->  ( [. A  /  x ]. ps  ->  [. A  /  x ]. ch ) ) ) )
(Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sbcim2gVD  |-  ( A  e.  B  ->  ( [. A  /  x ]. ( ph  ->  ( ps  ->  ch ) )  <-> 
( [. A  /  x ]. ph  ->  ( [. A  /  x ]. ps  ->  [. A  /  x ]. ch ) ) ) )

Proof of Theorem sbcim2gVD
StepHypRef Expression
1 idn1 33452 . . . . . 6  |-  (. A  e.  B  ->.  A  e.  B ).
2 idn2 33500 . . . . . 6  |-  (. A  e.  B ,. [. A  /  x ]. ( ph  ->  ( ps  ->  ch ) )  ->.  [. A  /  x ]. ( ph  ->  ( ps  ->  ch )
) ).
3 sbcimg 3369 . . . . . . 7  |-  ( A  e.  B  ->  ( [. A  /  x ]. ( ph  ->  ( ps  ->  ch ) )  <-> 
( [. A  /  x ]. ph  ->  [. A  /  x ]. ( ps  ->  ch ) ) ) )
43biimpd 207 . . . . . 6  |-  ( A  e.  B  ->  ( [. A  /  x ]. ( ph  ->  ( ps  ->  ch ) )  ->  ( [. A  /  x ]. ph  ->  [. A  /  x ]. ( ps  ->  ch )
) ) )
51, 2, 4e12 33622 . . . . 5  |-  (. A  e.  B ,. [. A  /  x ]. ( ph  ->  ( ps  ->  ch ) )  ->.  ( [. A  /  x ]. ph  ->  [. A  /  x ]. ( ps  ->  ch )
) ).
6 sbcimg 3369 . . . . . 6  |-  ( A  e.  B  ->  ( [. A  /  x ]. ( ps  ->  ch ) 
<->  ( [. A  /  x ]. ps  ->  [. A  /  x ]. ch )
) )
71, 6e1a 33514 . . . . 5  |-  (. A  e.  B  ->.  ( [. A  /  x ]. ( ps 
->  ch )  <->  ( [. A  /  x ]. ps  ->  [. A  /  x ]. ch ) ) ).
8 imbi2 324 . . . . . 6  |-  ( (
[. A  /  x ]. ( ps  ->  ch ) 
<->  ( [. A  /  x ]. ps  ->  [. A  /  x ]. ch )
)  ->  ( ( [. A  /  x ]. ph  ->  [. A  /  x ]. ( ps  ->  ch ) )  <->  ( [. A  /  x ]. ph  ->  (
[. A  /  x ]. ps  ->  [. A  /  x ]. ch ) ) ) )
98biimpcd 224 . . . . 5  |-  ( (
[. A  /  x ]. ph  ->  [. A  /  x ]. ( ps  ->  ch ) )  ->  (
( [. A  /  x ]. ( ps  ->  ch ) 
<->  ( [. A  /  x ]. ps  ->  [. A  /  x ]. ch )
)  ->  ( [. A  /  x ]. ph  ->  (
[. A  /  x ]. ps  ->  [. A  /  x ]. ch ) ) ) )
105, 7, 9e21 33628 . . . 4  |-  (. A  e.  B ,. [. A  /  x ]. ( ph  ->  ( ps  ->  ch ) )  ->.  ( [. A  /  x ]. ph  ->  (
[. A  /  x ]. ps  ->  [. A  /  x ]. ch ) ) ).
1110in2 33492 . . 3  |-  (. A  e.  B  ->.  ( [. A  /  x ]. ( ph  ->  ( ps  ->  ch ) )  ->  ( [. A  /  x ]. ph  ->  ( [. A  /  x ]. ps  ->  [. A  /  x ]. ch ) ) ) ).
12 idn2 33500 . . . . . 6  |-  (. A  e.  B ,. ( [. A  /  x ]. ph  ->  (
[. A  /  x ]. ps  ->  [. A  /  x ]. ch ) )  ->.  ( [. A  /  x ]. ph  ->  ( [. A  /  x ]. ps  ->  [. A  /  x ]. ch ) ) ).
13 bi2 198 . . . . . . 7  |-  ( (
[. A  /  x ]. ( ps  ->  ch ) 
<->  ( [. A  /  x ]. ps  ->  [. A  /  x ]. ch )
)  ->  ( ( [. A  /  x ]. ps  ->  [. A  /  x ]. ch )  ->  [. A  /  x ]. ( ps  ->  ch ) ) )
1413imim2d 52 . . . . . 6  |-  ( (
[. A  /  x ]. ( ps  ->  ch ) 
<->  ( [. A  /  x ]. ps  ->  [. A  /  x ]. ch )
)  ->  ( ( [. A  /  x ]. ph  ->  ( [. A  /  x ]. ps  ->  [. A  /  x ]. ch ) )  -> 
( [. A  /  x ]. ph  ->  [. A  /  x ]. ( ps  ->  ch ) ) ) )
157, 12, 14e12 33622 . . . . 5  |-  (. A  e.  B ,. ( [. A  /  x ]. ph  ->  (
[. A  /  x ]. ps  ->  [. A  /  x ]. ch ) )  ->.  ( [. A  /  x ]. ph  ->  [. A  /  x ]. ( ps  ->  ch ) ) ).
161, 3e1a 33514 . . . . 5  |-  (. A  e.  B  ->.  ( [. A  /  x ]. ( ph  ->  ( ps  ->  ch ) )  <->  ( [. A  /  x ]. ph  ->  [. A  /  x ]. ( ps  ->  ch )
) ) ).
17 bi2 198 . . . . . 6  |-  ( (
[. A  /  x ]. ( ph  ->  ( ps  ->  ch ) )  <-> 
( [. A  /  x ]. ph  ->  [. A  /  x ]. ( ps  ->  ch ) ) )  -> 
( ( [. A  /  x ]. ph  ->  [. A  /  x ]. ( ps  ->  ch )
)  ->  [. A  /  x ]. ( ph  ->  ( ps  ->  ch )
) ) )
1817com12 31 . . . . 5  |-  ( (
[. A  /  x ]. ph  ->  [. A  /  x ]. ( ps  ->  ch ) )  ->  (
( [. A  /  x ]. ( ph  ->  ( ps  ->  ch ) )  <-> 
( [. A  /  x ]. ph  ->  [. A  /  x ]. ( ps  ->  ch ) ) )  ->  [. A  /  x ]. ( ph  ->  ( ps  ->  ch ) ) ) )
1915, 16, 18e21 33628 . . . 4  |-  (. A  e.  B ,. ( [. A  /  x ]. ph  ->  (
[. A  /  x ]. ps  ->  [. A  /  x ]. ch ) )  ->.  [. A  /  x ]. ( ph  ->  ( ps  ->  ch ) ) ).
2019in2 33492 . . 3  |-  (. A  e.  B  ->.  ( ( [. A  /  x ]. ph  ->  (
[. A  /  x ]. ps  ->  [. A  /  x ]. ch ) )  ->  [. A  /  x ]. ( ph  ->  ( ps  ->  ch ) ) ) ).
21 bi3 187 . . 3  |-  ( (
[. A  /  x ]. ( ph  ->  ( ps  ->  ch ) )  ->  ( [. A  /  x ]. ph  ->  (
[. A  /  x ]. ps  ->  [. A  /  x ]. ch ) ) )  ->  ( (
( [. A  /  x ]. ph  ->  ( [. A  /  x ]. ps  ->  [. A  /  x ]. ch ) )  ->  [. A  /  x ]. ( ph  ->  ( ps  ->  ch ) ) )  ->  ( [. A  /  x ]. ( ph  ->  ( ps  ->  ch ) )  <->  ( [. A  /  x ]. ph  ->  (
[. A  /  x ]. ps  ->  [. A  /  x ]. ch ) ) ) ) )
2211, 20, 21e11 33575 . 2  |-  (. A  e.  B  ->.  ( [. A  /  x ]. ( ph  ->  ( ps  ->  ch ) )  <->  ( [. A  /  x ]. ph  ->  (
[. A  /  x ]. ps  ->  [. A  /  x ]. ch ) ) ) ).
2322in1 33449 1  |-  ( A  e.  B  ->  ( [. A  /  x ]. ( ph  ->  ( ps  ->  ch ) )  <-> 
( [. A  /  x ]. ph  ->  ( [. A  /  x ]. ps  ->  [. A  /  x ]. ch ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    e. wcel 1819   [.wsbc 3327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-10 1838  ax-12 1855  ax-13 2000  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-clab 2443  df-cleq 2449  df-clel 2452  df-v 3111  df-sbc 3328  df-vd1 33448  df-vd2 33456
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator