Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbciegf Structured version   Visualization version   Unicode version

Theorem sbciegf 3287
 Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 13-Oct-2016.)
Hypotheses
Ref Expression
sbciegf.1
sbciegf.2
Assertion
Ref Expression
sbciegf
Distinct variable group:   ,
Allowed substitution hints:   ()   ()   ()

Proof of Theorem sbciegf
StepHypRef Expression
1 sbciegf.1 . 2
2 sbciegf.2 . . 3
32ax-gen 1677 . 2
4 sbciegft 3286 . 2
51, 3, 4mp3an23 1382 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 189  wal 1450   wceq 1452  wnf 1675   wcel 1904  wsbc 3255 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-10 1932  ax-12 1950  ax-13 2104  ax-ext 2451 This theorem depends on definitions:  df-bi 190  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-clab 2458  df-cleq 2464  df-clel 2467  df-v 3033  df-sbc 3256 This theorem is referenced by:  sbcieg  3288  opelopabgf  4721  opelopabf  4726  eqerlem  7413  iunxsngf  28250  bnj919  29650  bnj1464  29727  bnj1123  29867  bnj1373  29911  poimirlem25  32029  sbccomieg  35707  aomclem6  35988  fveqsb  36876  rexsngf  37450
 Copyright terms: Public domain W3C validator