MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcied2 Structured version   Unicode version

Theorem sbcied2 3351
Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 13-Dec-2014.)
Hypotheses
Ref Expression
sbcied2.1  |-  ( ph  ->  A  e.  V )
sbcied2.2  |-  ( ph  ->  A  =  B )
sbcied2.3  |-  ( (
ph  /\  x  =  B )  ->  ( ps 
<->  ch ) )
Assertion
Ref Expression
sbcied2  |-  ( ph  ->  ( [. A  /  x ]. ps  <->  ch )
)
Distinct variable groups:    x, A    ph, x    ch, x
Allowed substitution hints:    ps( x)    B( x)    V( x)

Proof of Theorem sbcied2
StepHypRef Expression
1 sbcied2.1 . 2  |-  ( ph  ->  A  e.  V )
2 id 22 . . . 4  |-  ( x  =  A  ->  x  =  A )
3 sbcied2.2 . . . 4  |-  ( ph  ->  A  =  B )
42, 3sylan9eqr 2506 . . 3  |-  ( (
ph  /\  x  =  A )  ->  x  =  B )
5 sbcied2.3 . . 3  |-  ( (
ph  /\  x  =  B )  ->  ( ps 
<->  ch ) )
64, 5syldan 470 . 2  |-  ( (
ph  /\  x  =  A )  ->  ( ps 
<->  ch ) )
71, 6sbcied 3350 1  |-  ( ph  ->  ( [. A  /  x ]. ps  <->  ch )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1383    e. wcel 1804   [.wsbc 3313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-10 1823  ax-12 1840  ax-13 1985  ax-ext 2421
This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-clab 2429  df-cleq 2435  df-clel 2438  df-v 3097  df-sbc 3314
This theorem is referenced by:  iscat  14946  sectffval  15022  issubc  15081  isfunc  15107  ismgm  15747  issgrp  15786  ismndOLD  15800  isnsg  16104  isring  17076  islbs  17596  isdomn  17817  isassa  17838  opsrval  18013  isuhgr  32204  isushgr  32205  isrng  32403
  Copyright terms: Public domain W3C validator