MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcied2 Structured version   Unicode version

Theorem sbcied2 3362
Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 13-Dec-2014.)
Hypotheses
Ref Expression
sbcied2.1  |-  ( ph  ->  A  e.  V )
sbcied2.2  |-  ( ph  ->  A  =  B )
sbcied2.3  |-  ( (
ph  /\  x  =  B )  ->  ( ps 
<->  ch ) )
Assertion
Ref Expression
sbcied2  |-  ( ph  ->  ( [. A  /  x ]. ps  <->  ch )
)
Distinct variable groups:    x, A    ph, x    ch, x
Allowed substitution hints:    ps( x)    B( x)    V( x)

Proof of Theorem sbcied2
StepHypRef Expression
1 sbcied2.1 . 2  |-  ( ph  ->  A  e.  V )
2 id 22 . . . 4  |-  ( x  =  A  ->  x  =  A )
3 sbcied2.2 . . . 4  |-  ( ph  ->  A  =  B )
42, 3sylan9eqr 2523 . . 3  |-  ( (
ph  /\  x  =  A )  ->  x  =  B )
5 sbcied2.3 . . 3  |-  ( (
ph  /\  x  =  B )  ->  ( ps 
<->  ch ) )
64, 5syldan 470 . 2  |-  ( (
ph  /\  x  =  A )  ->  ( ps 
<->  ch ) )
71, 6sbcied 3361 1  |-  ( ph  ->  ( [. A  /  x ]. ps  <->  ch )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1374    e. wcel 1762   [.wsbc 3324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-10 1781  ax-12 1798  ax-13 1961  ax-ext 2438
This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-clab 2446  df-cleq 2452  df-clel 2455  df-v 3108  df-sbc 3325
This theorem is referenced by:  iscat  14916  sectffval  14995  issubc  15054  isfunc  15080  ismnd  15723  isnsg  16018  isrng  16983  islbs  17498  isdomn  17707  isassa  17728  opsrval  17903  ismgmALT  31846  issgrp  31849  isrng0  31856
  Copyright terms: Public domain W3C validator