MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcfung Structured version   Unicode version

Theorem sbcfung 5441
Description: Distribute proper substitution through the function predicate. (Contributed by Alexander van der Vekens, 23-Jul-2017.)
Assertion
Ref Expression
sbcfung  |-  ( A  e.  V  ->  ( [. A  /  x ]. Fun  F  <->  Fun  [_ A  /  x ]_ F ) )

Proof of Theorem sbcfung
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sbcan 3229 . . 3  |-  ( [. A  /  x ]. ( Rel  F  /\  A. w E. y A. z ( w F z  -> 
z  =  y ) )  <->  ( [. A  /  x ]. Rel  F  /\  [. A  /  x ]. A. w E. y A. z ( w F z  ->  z  =  y ) ) )
2 sbcrel 4926 . . . 4  |-  ( A  e.  V  ->  ( [. A  /  x ]. Rel  F  <->  Rel  [_ A  /  x ]_ F ) )
3 sbcal 3238 . . . . 5  |-  ( [. A  /  x ]. A. w E. y A. z
( w F z  ->  z  =  y )  <->  A. w [. A  /  x ]. E. y A. z ( w F z  ->  z  =  y ) )
4 sbcex2 3240 . . . . . . 7  |-  ( [. A  /  x ]. E. y A. z ( w F z  ->  z  =  y )  <->  E. y [. A  /  x ]. A. z ( w F z  ->  z  =  y ) )
5 sbcal 3238 . . . . . . . . 9  |-  ( [. A  /  x ]. A. z ( w F z  ->  z  =  y )  <->  A. z [. A  /  x ]. ( w F z  ->  z  =  y ) )
6 sbcimg 3228 . . . . . . . . . . 11  |-  ( A  e.  V  ->  ( [. A  /  x ]. ( w F z  ->  z  =  y )  <->  ( [. A  /  x ]. w F z  ->  [. A  /  x ]. z  =  y ) ) )
7 sbcbr123 4343 . . . . . . . . . . . . 13  |-  ( [. A  /  x ]. w F z  <->  [_ A  /  x ]_ w [_ A  /  x ]_ F [_ A  /  x ]_ z
)
8 csbconstg 3301 . . . . . . . . . . . . . 14  |-  ( A  e.  V  ->  [_ A  /  x ]_ w  =  w )
9 csbconstg 3301 . . . . . . . . . . . . . 14  |-  ( A  e.  V  ->  [_ A  /  x ]_ z  =  z )
108, 9breq12d 4305 . . . . . . . . . . . . 13  |-  ( A  e.  V  ->  ( [_ A  /  x ]_ w [_ A  /  x ]_ F [_ A  /  x ]_ z  <->  w [_ A  /  x ]_ F
z ) )
117, 10syl5bb 257 . . . . . . . . . . . 12  |-  ( A  e.  V  ->  ( [. A  /  x ]. w F z  <->  w [_ A  /  x ]_ F
z ) )
12 sbcg 3260 . . . . . . . . . . . 12  |-  ( A  e.  V  ->  ( [. A  /  x ]. z  =  y  <->  z  =  y ) )
1311, 12imbi12d 320 . . . . . . . . . . 11  |-  ( A  e.  V  ->  (
( [. A  /  x ]. w F z  ->  [. A  /  x ]. z  =  y
)  <->  ( w [_ A  /  x ]_ F
z  ->  z  =  y ) ) )
146, 13bitrd 253 . . . . . . . . . 10  |-  ( A  e.  V  ->  ( [. A  /  x ]. ( w F z  ->  z  =  y )  <->  ( w [_ A  /  x ]_ F
z  ->  z  =  y ) ) )
1514albidv 1679 . . . . . . . . 9  |-  ( A  e.  V  ->  ( A. z [. A  /  x ]. ( w F z  ->  z  =  y )  <->  A. z
( w [_ A  /  x ]_ F z  ->  z  =  y ) ) )
165, 15syl5bb 257 . . . . . . . 8  |-  ( A  e.  V  ->  ( [. A  /  x ]. A. z ( w F z  ->  z  =  y )  <->  A. z
( w [_ A  /  x ]_ F z  ->  z  =  y ) ) )
1716exbidv 1680 . . . . . . 7  |-  ( A  e.  V  ->  ( E. y [. A  /  x ]. A. z ( w F z  -> 
z  =  y )  <->  E. y A. z ( w [_ A  /  x ]_ F z  -> 
z  =  y ) ) )
184, 17syl5bb 257 . . . . . 6  |-  ( A  e.  V  ->  ( [. A  /  x ]. E. y A. z
( w F z  ->  z  =  y )  <->  E. y A. z
( w [_ A  /  x ]_ F z  ->  z  =  y ) ) )
1918albidv 1679 . . . . 5  |-  ( A  e.  V  ->  ( A. w [. A  /  x ]. E. y A. z ( w F z  ->  z  =  y )  <->  A. w E. y A. z ( w [_ A  /  x ]_ F z  -> 
z  =  y ) ) )
203, 19syl5bb 257 . . . 4  |-  ( A  e.  V  ->  ( [. A  /  x ]. A. w E. y A. z ( w F z  ->  z  =  y )  <->  A. w E. y A. z ( w [_ A  /  x ]_ F z  -> 
z  =  y ) ) )
212, 20anbi12d 710 . . 3  |-  ( A  e.  V  ->  (
( [. A  /  x ]. Rel  F  /\  [. A  /  x ]. A. w E. y A. z ( w F z  -> 
z  =  y ) )  <->  ( Rel  [_ A  /  x ]_ F  /\  A. w E. y A. z ( w [_ A  /  x ]_ F
z  ->  z  =  y ) ) ) )
221, 21syl5bb 257 . 2  |-  ( A  e.  V  ->  ( [. A  /  x ]. ( Rel  F  /\  A. w E. y A. z ( w F z  ->  z  =  y ) )  <->  ( Rel  [_ A  /  x ]_ F  /\  A. w E. y A. z ( w
[_ A  /  x ]_ F z  ->  z  =  y ) ) ) )
23 dffun3 5429 . . 3  |-  ( Fun 
F  <->  ( Rel  F  /\  A. w E. y A. z ( w F z  ->  z  =  y ) ) )
2423sbcbii 3246 . 2  |-  ( [. A  /  x ]. Fun  F  <->  [. A  /  x ]. ( Rel  F  /\  A. w E. y A. z ( w F z  ->  z  =  y ) ) )
25 dffun3 5429 . 2  |-  ( Fun  [_ A  /  x ]_ F  <->  ( Rel  [_ A  /  x ]_ F  /\  A. w E. y A. z ( w [_ A  /  x ]_ F
z  ->  z  =  y ) ) )
2622, 24, 253bitr4g 288 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. Fun  F  <->  Fun  [_ A  /  x ]_ F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369   A.wal 1367   E.wex 1586    e. wcel 1756   [.wsbc 3186   [_csb 3288   class class class wbr 4292   Rel wrel 4845   Fun wfun 5412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4413  ax-nul 4421  ax-pr 4531
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2720  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-nul 3638  df-if 3792  df-sn 3878  df-pr 3880  df-op 3884  df-br 4293  df-opab 4351  df-id 4636  df-rel 4847  df-cnv 4848  df-co 4849  df-fun 5420
This theorem is referenced by:  sbcfng  5556
  Copyright terms: Public domain W3C validator