Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbcfun Unicode version

Theorem sbcfun 27657
Description: Distribute proper substitution through the function predicate. (Contributed by Alexander van der Vekens, 23-Jul-2017.)
Assertion
Ref Expression
sbcfun  |-  ( A  e.  V  ->  ( [. A  /  x ]. Fun  F  <->  Fun  [_ A  /  x ]_ F ) )

Proof of Theorem sbcfun
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sbcan 3148 . . 3  |-  ( [. A  /  x ]. ( Rel  F  /\  A. w E. y A. z ( w F z  -> 
z  =  y ) )  <->  ( [. A  /  x ]. Rel  F  /\  [. A  /  x ]. A. w E. y A. z ( w F z  ->  z  =  y ) ) )
2 sbcrel 27651 . . . 4  |-  ( A  e.  V  ->  ( [. A  /  x ]. Rel  F  <->  Rel  [_ A  /  x ]_ F ) )
3 sbcal 3153 . . . . 5  |-  ( [. A  /  x ]. A. w E. y A. z
( w F z  ->  z  =  y )  <->  A. w [. A  /  x ]. E. y A. z ( w F z  ->  z  =  y ) )
4 sbcex2 3155 . . . . . . 7  |-  ( [. A  /  x ]. E. y A. z ( w F z  ->  z  =  y )  <->  E. y [. A  /  x ]. A. z ( w F z  ->  z  =  y ) )
5 sbcal 3153 . . . . . . . . 9  |-  ( [. A  /  x ]. A. z ( w F z  ->  z  =  y )  <->  A. z [. A  /  x ]. ( w F z  ->  z  =  y ) )
6 sbcimg 3147 . . . . . . . . . . 11  |-  ( A  e.  V  ->  ( [. A  /  x ]. ( w F z  ->  z  =  y )  <->  ( [. A  /  x ]. w F z  ->  [. A  /  x ]. z  =  y ) ) )
7 sbcbrg 4204 . . . . . . . . . . . . 13  |-  ( A  e.  V  ->  ( [. A  /  x ]. w F z  <->  [_ A  /  x ]_ w [_ A  /  x ]_ F [_ A  /  x ]_ z
) )
8 csbconstg 3210 . . . . . . . . . . . . . 14  |-  ( A  e.  V  ->  [_ A  /  x ]_ w  =  w )
9 csbconstg 3210 . . . . . . . . . . . . . 14  |-  ( A  e.  V  ->  [_ A  /  x ]_ z  =  z )
108, 9breq12d 4168 . . . . . . . . . . . . 13  |-  ( A  e.  V  ->  ( [_ A  /  x ]_ w [_ A  /  x ]_ F [_ A  /  x ]_ z  <->  w [_ A  /  x ]_ F
z ) )
117, 10bitrd 245 . . . . . . . . . . . 12  |-  ( A  e.  V  ->  ( [. A  /  x ]. w F z  <->  w [_ A  /  x ]_ F
z ) )
12 sbcg 3171 . . . . . . . . . . . 12  |-  ( A  e.  V  ->  ( [. A  /  x ]. z  =  y  <->  z  =  y ) )
1311, 12imbi12d 312 . . . . . . . . . . 11  |-  ( A  e.  V  ->  (
( [. A  /  x ]. w F z  ->  [. A  /  x ]. z  =  y
)  <->  ( w [_ A  /  x ]_ F
z  ->  z  =  y ) ) )
146, 13bitrd 245 . . . . . . . . . 10  |-  ( A  e.  V  ->  ( [. A  /  x ]. ( w F z  ->  z  =  y )  <->  ( w [_ A  /  x ]_ F
z  ->  z  =  y ) ) )
1514albidv 1632 . . . . . . . . 9  |-  ( A  e.  V  ->  ( A. z [. A  /  x ]. ( w F z  ->  z  =  y )  <->  A. z
( w [_ A  /  x ]_ F z  ->  z  =  y ) ) )
165, 15syl5bb 249 . . . . . . . 8  |-  ( A  e.  V  ->  ( [. A  /  x ]. A. z ( w F z  ->  z  =  y )  <->  A. z
( w [_ A  /  x ]_ F z  ->  z  =  y ) ) )
1716exbidv 1633 . . . . . . 7  |-  ( A  e.  V  ->  ( E. y [. A  /  x ]. A. z ( w F z  -> 
z  =  y )  <->  E. y A. z ( w [_ A  /  x ]_ F z  -> 
z  =  y ) ) )
184, 17syl5bb 249 . . . . . 6  |-  ( A  e.  V  ->  ( [. A  /  x ]. E. y A. z
( w F z  ->  z  =  y )  <->  E. y A. z
( w [_ A  /  x ]_ F z  ->  z  =  y ) ) )
1918albidv 1632 . . . . 5  |-  ( A  e.  V  ->  ( A. w [. A  /  x ]. E. y A. z ( w F z  ->  z  =  y )  <->  A. w E. y A. z ( w [_ A  /  x ]_ F z  -> 
z  =  y ) ) )
203, 19syl5bb 249 . . . 4  |-  ( A  e.  V  ->  ( [. A  /  x ]. A. w E. y A. z ( w F z  ->  z  =  y )  <->  A. w E. y A. z ( w [_ A  /  x ]_ F z  -> 
z  =  y ) ) )
212, 20anbi12d 692 . . 3  |-  ( A  e.  V  ->  (
( [. A  /  x ]. Rel  F  /\  [. A  /  x ]. A. w E. y A. z ( w F z  -> 
z  =  y ) )  <->  ( Rel  [_ A  /  x ]_ F  /\  A. w E. y A. z ( w [_ A  /  x ]_ F
z  ->  z  =  y ) ) ) )
221, 21syl5bb 249 . 2  |-  ( A  e.  V  ->  ( [. A  /  x ]. ( Rel  F  /\  A. w E. y A. z ( w F z  ->  z  =  y ) )  <->  ( Rel  [_ A  /  x ]_ F  /\  A. w E. y A. z ( w
[_ A  /  x ]_ F z  ->  z  =  y ) ) ) )
23 dffun3 5407 . . 3  |-  ( Fun 
F  <->  ( Rel  F  /\  A. w E. y A. z ( w F z  ->  z  =  y ) ) )
2423sbcbii 3161 . 2  |-  ( [. A  /  x ]. Fun  F  <->  [. A  /  x ]. ( Rel  F  /\  A. w E. y A. z ( w F z  ->  z  =  y ) ) )
25 dffun3 5407 . 2  |-  ( Fun  [_ A  /  x ]_ F  <->  ( Rel  [_ A  /  x ]_ F  /\  A. w E. y A. z ( w [_ A  /  x ]_ F
z  ->  z  =  y ) ) )
2622, 24, 253bitr4g 280 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. Fun  F  <->  Fun  [_ A  /  x ]_ F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   A.wal 1546   E.wex 1547    e. wcel 1717   [.wsbc 3106   [_csb 3196   class class class wbr 4155   Rel wrel 4825   Fun wfun 5390
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-sep 4273  ax-nul 4281  ax-pr 4346
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-ral 2656  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-nul 3574  df-if 3685  df-sn 3765  df-pr 3766  df-op 3768  df-br 4156  df-opab 4210  df-id 4441  df-rel 4827  df-cnv 4828  df-co 4829  df-fun 5398
  Copyright terms: Public domain W3C validator