MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbceqg Structured version   Unicode version

Theorem sbceqg 3698
Description: Distribute proper substitution through an equality relation. (Contributed by NM, 10-Nov-2005.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
sbceqg  |-  ( A  e.  V  ->  ( [. A  /  x ]. B  =  C  <->  [_ A  /  x ]_ B  =  [_ A  /  x ]_ C ) )

Proof of Theorem sbceqg
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 3210 . . 3  |-  ( z  =  A  ->  ( [ z  /  x ] B  =  C  <->  [. A  /  x ]. B  =  C )
)
2 dfsbcq2 3210 . . . . 5  |-  ( z  =  A  ->  ( [ z  /  x ] y  e.  B  <->  [. A  /  x ]. y  e.  B )
)
32abbidv 2563 . . . 4  |-  ( z  =  A  ->  { y  |  [ z  /  x ] y  e.  B }  =  { y  |  [. A  /  x ]. y  e.  B } )
4 dfsbcq2 3210 . . . . 5  |-  ( z  =  A  ->  ( [ z  /  x ] y  e.  C  <->  [. A  /  x ]. y  e.  C )
)
54abbidv 2563 . . . 4  |-  ( z  =  A  ->  { y  |  [ z  /  x ] y  e.  C }  =  { y  |  [. A  /  x ]. y  e.  C } )
63, 5eqeq12d 2457 . . 3  |-  ( z  =  A  ->  ( { y  |  [
z  /  x ]
y  e.  B }  =  { y  |  [
z  /  x ]
y  e.  C }  <->  { y  |  [. A  /  x ]. y  e.  B }  =  {
y  |  [. A  /  x ]. y  e.  C } ) )
7 nfs1v 2142 . . . . . 6  |-  F/ x [ z  /  x ] y  e.  B
87nfab 2593 . . . . 5  |-  F/_ x { y  |  [
z  /  x ]
y  e.  B }
9 nfs1v 2142 . . . . . 6  |-  F/ x [ z  /  x ] y  e.  C
109nfab 2593 . . . . 5  |-  F/_ x { y  |  [
z  /  x ]
y  e.  C }
118, 10nfeq 2599 . . . 4  |-  F/ x { y  |  [
z  /  x ]
y  e.  B }  =  { y  |  [
z  /  x ]
y  e.  C }
12 sbab 2574 . . . . 5  |-  ( x  =  z  ->  B  =  { y  |  [
z  /  x ]
y  e.  B }
)
13 sbab 2574 . . . . 5  |-  ( x  =  z  ->  C  =  { y  |  [
z  /  x ]
y  e.  C }
)
1412, 13eqeq12d 2457 . . . 4  |-  ( x  =  z  ->  ( B  =  C  <->  { y  |  [ z  /  x ] y  e.  B }  =  { y  |  [ z  /  x ] y  e.  C } ) )
1511, 14sbie 2100 . . 3  |-  ( [ z  /  x ] B  =  C  <->  { y  |  [ z  /  x ] y  e.  B }  =  { y  |  [ z  /  x ] y  e.  C } )
161, 6, 15vtoclbg 3052 . 2  |-  ( A  e.  V  ->  ( [. A  /  x ]. B  =  C  <->  { y  |  [. A  /  x ]. y  e.  B }  =  {
y  |  [. A  /  x ]. y  e.  C } ) )
17 df-csb 3310 . . 3  |-  [_ A  /  x ]_ B  =  { y  |  [. A  /  x ]. y  e.  B }
18 df-csb 3310 . . 3  |-  [_ A  /  x ]_ C  =  { y  |  [. A  /  x ]. y  e.  C }
1917, 18eqeq12i 2456 . 2  |-  ( [_ A  /  x ]_ B  =  [_ A  /  x ]_ C  <->  { y  |  [. A  /  x ]. y  e.  B }  =  {
y  |  [. A  /  x ]. y  e.  C } )
2016, 19syl6bbr 263 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. B  =  C  <->  [_ A  /  x ]_ B  =  [_ A  /  x ]_ C ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    = wceq 1369   [wsb 1700    e. wcel 1756   {cab 2429   [.wsbc 3207   [_csb 3309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-v 2995  df-sbc 3208  df-csb 3310
This theorem is referenced by:  sbcne12  3700  sbcne12gOLD  3701  sbceq1g  3703  sbceq2g  3706  csbmpt12  4643  sbcfng  5577  swrdspsleq  12363  sbceqi  28942  onfrALTlem5  31346  onfrALTlem4  31347  csbeq2gOLD  31354  csbfv12gALTOLD  31653  csbingVD  31716  onfrALTlem5VD  31717  onfrALTlem4VD  31718  csbeq2gVD  31724  csbsngVD  31725  csbunigVD  31730  csbfv12gALTVD  31731  cdlemk42  34681
  Copyright terms: Public domain W3C validator