Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcel2gOLD Structured version   Unicode version

Theorem sbcel2gOLD 3832
 Description: Move proper substitution in and out of a membership relation. (Contributed by NM, 14-Nov-2005.) Obsolete as of 18-Aug-2018. Use sbcel2 3831 instead. (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
sbcel2gOLD
Distinct variable group:   ,
Allowed substitution hints:   ()   ()   ()

Proof of Theorem sbcel2gOLD
StepHypRef Expression
1 sbcel12gOLD 3824 . 2
2 csbconstg 3448 . . 3
32eleq1d 2536 . 2
41, 3bitrd 253 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 184   wcel 1767  wsbc 3331  csb 3435 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-v 3115  df-sbc 3332  df-csb 3436 This theorem is referenced by:  csbcomgOLD  3838  sbccsbgOLD  3850  csbabgOLD  3856  csbunigOLD  4274  csbxpgOLD  5080  csbrngOLD  5467  sbcssOLD  32393  sbcssgVD  32763  csbingVD  32764  csbunigVD  32778
 Copyright terms: Public domain W3C validator