Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbccsbgOLD Structured version   Unicode version

Theorem sbccsbgOLD 3836
 Description: Substitution into a wff expressed in terms of substitution into a class. (Contributed by NM, 15-Aug-2007.) Obsolete as of 18-Aug-2018. Use sbccsb 3835 instead. (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
sbccsbgOLD
Distinct variable group:   ,
Allowed substitution hints:   (,)   (,)   (,)

Proof of Theorem sbccsbgOLD
StepHypRef Expression
1 abid 2430 . . 3
21sbcbii 3373 . 2
3 sbcel2gOLD 3818 . 2
42, 3syl5bbr 259 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 184   wcel 1804  cab 2428  wsbc 3313  csb 3420 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-v 3097  df-sbc 3314  df-csb 3421 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator