Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbccsb2gOLD Structured version   Unicode version

Theorem sbccsb2gOLD 3815
 Description: Substitution into a wff expressed in using substitution into a class. (Contributed by NM, 27-Nov-2005.) Obsolete as of 18-Aug-2018. Use sbccsb2 3814 instead. (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
sbccsb2gOLD

Proof of Theorem sbccsb2gOLD
StepHypRef Expression
1 abid 2441 . . 3
21sbcbii 3354 . 2
3 sbcel12gOLD 3787 . . 3
4 csbvarg 3811 . . . 4
54eleq1d 2523 . . 3
63, 5bitrd 253 . 2
72, 6syl5bbr 259 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 184   wcel 1758  cab 2439  wsbc 3294  csb 3398 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-v 3080  df-sbc 3295  df-csb 3399 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator