MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbccsb2 Structured version   Unicode version

Theorem sbccsb2 3814
Description: Substitution into a wff expressed in using substitution into a class. (Contributed by NM, 27-Nov-2005.) (Revised by NM, 18-Aug-2018.)
Assertion
Ref Expression
sbccsb2  |-  ( [. A  /  x ]. ph  <->  A  e.  [_ A  /  x ]_ { x  |  ph }
)

Proof of Theorem sbccsb2
StepHypRef Expression
1 sbcex 3304 . 2  |-  ( [. A  /  x ]. ph  ->  A  e.  _V )
2 elex 3087 . 2  |-  ( A  e.  [_ A  /  x ]_ { x  | 
ph }  ->  A  e.  _V )
3 abid 2441 . . . 4  |-  ( x  e.  { x  | 
ph }  <->  ph )
43sbcbii 3354 . . 3  |-  ( [. A  /  x ]. x  e.  { x  |  ph } 
<-> 
[. A  /  x ]. ph )
5 sbcel12 3786 . . . 4  |-  ( [. A  /  x ]. x  e.  { x  |  ph } 
<-> 
[_ A  /  x ]_ x  e.  [_ A  /  x ]_ { x  |  ph } )
6 csbvarg 3811 . . . . 5  |-  ( A  e.  _V  ->  [_ A  /  x ]_ x  =  A )
76eleq1d 2523 . . . 4  |-  ( A  e.  _V  ->  ( [_ A  /  x ]_ x  e.  [_ A  /  x ]_ { x  |  ph }  <->  A  e.  [_ A  /  x ]_ { x  |  ph }
) )
85, 7syl5bb 257 . . 3  |-  ( A  e.  _V  ->  ( [. A  /  x ]. x  e.  { x  |  ph }  <->  A  e.  [_ A  /  x ]_ { x  |  ph }
) )
94, 8syl5bbr 259 . 2  |-  ( A  e.  _V  ->  ( [. A  /  x ]. ph  <->  A  e.  [_ A  /  x ]_ { x  |  ph } ) )
101, 2, 9pm5.21nii 353 1  |-  ( [. A  /  x ]. ph  <->  A  e.  [_ A  /  x ]_ { x  |  ph }
)
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    e. wcel 1758   {cab 2439   _Vcvv 3078   [.wsbc 3294   [_csb 3398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-in 3446  df-ss 3453  df-nul 3749
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator