Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbccsb Structured version   Unicode version

Theorem sbccsb 3856
 Description: Substitution into a wff expressed in terms of substitution into a class. (Contributed by NM, 15-Aug-2007.) (Revised by NM, 18-Aug-2018.)
Assertion
Ref Expression
sbccsb
Distinct variable group:   ,
Allowed substitution hints:   (,)   (,)

Proof of Theorem sbccsb
StepHypRef Expression
1 abid 2444 . . 3
21sbcbii 3387 . 2
3 sbcel2 3839 . 2
42, 3bitr3i 251 1
 Colors of variables: wff setvar class Syntax hints:   wb 184   wcel 1819  cab 2442  wsbc 3327  csb 3430 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-fal 1401  df-ex 1614  df-nf 1618  df-sb 1741  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-in 3478  df-ss 3485  df-nul 3794 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator