Mathbox for Stefan O'Rear < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbccomieg Structured version   Unicode version

Theorem sbccomieg 30319
 Description: Commute two explicit substitutions, using an implicit substitution to rewrite the exiting substitution. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Mario Carneiro, 11-Dec-2016.)
Hypothesis
Ref Expression
sbccomieg.1
Assertion
Ref Expression
sbccomieg
Distinct variable groups:   ,,   ,
Allowed substitution hints:   (,)   (,)   ()

Proof of Theorem sbccomieg
StepHypRef Expression
1 sbcex 3336 . 2
2 spesbc 3419 . . 3
3 sbcex 3336 . . . 4
43exlimiv 1693 . . 3
52, 4syl 16 . 2
6 nfcv 2624 . . . 4
7 nfsbc1v 3346 . . . 4
86, 7nfsbc 3348 . . 3
9 sbccomieg.1 . . . . 5
10 dfsbcq 3328 . . . . 5
119, 10syl 16 . . . 4
12 sbceq1a 3337 . . . . 5
1312sbcbidv 3385 . . . 4
1411, 13bitrd 253 . . 3
158, 14sbciegf 3358 . 2
161, 5, 15pm5.21nii 353 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 184   wceq 1374  wex 1591   wcel 1762  cvv 3108  wsbc 3326 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ral 2814  df-rex 2815  df-v 3110  df-sbc 3327 This theorem is referenced by:  2rexfrabdioph  30322  3rexfrabdioph  30323  4rexfrabdioph  30324  6rexfrabdioph  30325  7rexfrabdioph  30326
 Copyright terms: Public domain W3C validator