MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbccom Structured version   Visualization version   Unicode version

Theorem sbccom 3338
Description: Commutative law for double class substitution. (Contributed by NM, 15-Nov-2005.) (Proof shortened by Mario Carneiro, 18-Oct-2016.)
Assertion
Ref Expression
sbccom  |-  ( [. A  /  x ]. [. B  /  y ]. ph  <->  [. B  / 
y ]. [. A  /  x ]. ph )
Distinct variable groups:    y, A    x, B    x, y
Allowed substitution hints:    ph( x, y)    A( x)    B( y)

Proof of Theorem sbccom
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sbccomlem 3337 . . . 4  |-  ( [. A  /  z ]. [. B  /  w ]. [. w  /  y ]. [. z  /  x ]. ph  <->  [. B  /  w ]. [. A  / 
z ]. [. w  / 
y ]. [. z  /  x ]. ph )
2 sbccomlem 3337 . . . . . . 7  |-  ( [. w  /  y ]. [. z  /  x ]. ph  <->  [. z  /  x ]. [. w  / 
y ]. ph )
32sbcbii 3322 . . . . . 6  |-  ( [. B  /  w ]. [. w  /  y ]. [. z  /  x ]. ph  <->  [. B  /  w ]. [. z  /  x ]. [. w  / 
y ]. ph )
4 sbccomlem 3337 . . . . . 6  |-  ( [. B  /  w ]. [. z  /  x ]. [. w  /  y ]. ph  <->  [. z  /  x ]. [. B  /  w ]. [. w  / 
y ]. ph )
53, 4bitri 253 . . . . 5  |-  ( [. B  /  w ]. [. w  /  y ]. [. z  /  x ]. ph  <->  [. z  /  x ]. [. B  /  w ]. [. w  / 
y ]. ph )
65sbcbii 3322 . . . 4  |-  ( [. A  /  z ]. [. B  /  w ]. [. w  /  y ]. [. z  /  x ]. ph  <->  [. A  / 
z ]. [. z  /  x ]. [. B  /  w ]. [. w  / 
y ]. ph )
7 sbccomlem 3337 . . . . 5  |-  ( [. A  /  z ]. [. w  /  y ]. [. z  /  x ]. ph  <->  [. w  / 
y ]. [. A  / 
z ]. [. z  /  x ]. ph )
87sbcbii 3322 . . . 4  |-  ( [. B  /  w ]. [. A  /  z ]. [. w  /  y ]. [. z  /  x ]. ph  <->  [. B  /  w ]. [. w  / 
y ]. [. A  / 
z ]. [. z  /  x ]. ph )
91, 6, 83bitr3i 279 . . 3  |-  ( [. A  /  z ]. [. z  /  x ]. [. B  /  w ]. [. w  /  y ]. ph  <->  [. B  /  w ]. [. w  / 
y ]. [. A  / 
z ]. [. z  /  x ]. ph )
10 sbcco 3289 . . 3  |-  ( [. A  /  z ]. [. z  /  x ]. [. B  /  w ]. [. w  /  y ]. ph  <->  [. A  /  x ]. [. B  /  w ]. [. w  / 
y ]. ph )
11 sbcco 3289 . . 3  |-  ( [. B  /  w ]. [. w  /  y ]. [. A  /  z ]. [. z  /  x ]. ph  <->  [. B  / 
y ]. [. A  / 
z ]. [. z  /  x ]. ph )
129, 10, 113bitr3i 279 . 2  |-  ( [. A  /  x ]. [. B  /  w ]. [. w  /  y ]. ph  <->  [. B  / 
y ]. [. A  / 
z ]. [. z  /  x ]. ph )
13 sbcco 3289 . . 3  |-  ( [. B  /  w ]. [. w  /  y ]. ph  <->  [. B  / 
y ]. ph )
1413sbcbii 3322 . 2  |-  ( [. A  /  x ]. [. B  /  w ]. [. w  /  y ]. ph  <->  [. A  /  x ]. [. B  / 
y ]. ph )
15 sbcco 3289 . . 3  |-  ( [. A  /  z ]. [. z  /  x ]. ph  <->  [. A  /  x ]. ph )
1615sbcbii 3322 . 2  |-  ( [. B  /  y ]. [. A  /  z ]. [. z  /  x ]. ph  <->  [. B  / 
y ]. [. A  /  x ]. ph )
1712, 14, 163bitr3i 279 1  |-  ( [. A  /  x ]. [. B  /  y ]. ph  <->  [. B  / 
y ]. [. A  /  x ]. ph )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 188   [.wsbc 3266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-tru 1446  df-ex 1663  df-nf 1667  df-sb 1797  df-clab 2437  df-cleq 2443  df-clel 2446  df-v 3046  df-sbc 3267
This theorem is referenced by:  csbcom  3782  csbab  3796  mpt2xopovel  6963  fi1uzind  12647  wrd2ind  12829  elmptrab  20835  sbccom2  32358  sbcrot3  35628  csbabgOLD  37205
  Copyright terms: Public domain W3C validator