MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcan Structured version   Unicode version

Theorem sbcan 3379
Description: Distribution of class substitution over conjunction. (Contributed by NM, 31-Dec-2016.) (Revised by NM, 17-Aug-2018.)
Assertion
Ref Expression
sbcan  |-  ( [. A  /  x ]. ( ph  /\  ps )  <->  ( [. A  /  x ]. ph  /\  [. A  /  x ]. ps ) )

Proof of Theorem sbcan
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 sbcex 3346 . 2  |-  ( [. A  /  x ]. ( ph  /\  ps )  ->  A  e.  _V )
2 sbcex 3346 . . 3  |-  ( [. A  /  x ]. ps  ->  A  e.  _V )
32adantl 466 . 2  |-  ( (
[. A  /  x ]. ph  /\  [. A  /  x ]. ps )  ->  A  e.  _V )
4 dfsbcq2 3339 . . 3  |-  ( y  =  A  ->  ( [ y  /  x ] ( ph  /\  ps )  <->  [. A  /  x ]. ( ph  /\  ps ) ) )
5 dfsbcq2 3339 . . . 4  |-  ( y  =  A  ->  ( [ y  /  x ] ph  <->  [. A  /  x ]. ph ) )
6 dfsbcq2 3339 . . . 4  |-  ( y  =  A  ->  ( [ y  /  x ] ps  <->  [. A  /  x ]. ps ) )
75, 6anbi12d 710 . . 3  |-  ( y  =  A  ->  (
( [ y  /  x ] ph  /\  [
y  /  x ] ps )  <->  ( [. A  /  x ]. ph  /\  [. A  /  x ]. ps ) ) )
8 sban 2114 . . 3  |-  ( [ y  /  x ]
( ph  /\  ps )  <->  ( [ y  /  x ] ph  /\  [ y  /  x ] ps ) )
94, 7, 8vtoclbg 3177 . 2  |-  ( A  e.  _V  ->  ( [. A  /  x ]. ( ph  /\  ps ) 
<->  ( [. A  /  x ]. ph  /\  [. A  /  x ]. ps )
) )
101, 3, 9pm5.21nii 353 1  |-  ( [. A  /  x ]. ( ph  /\  ps )  <->  ( [. A  /  x ]. ph  /\  [. A  /  x ]. ps ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    = wceq 1379   [wsb 1711    e. wcel 1767   _Vcvv 3118   [.wsbc 3336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-12 1803  ax-13 1968  ax-ext 2445
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-v 3120  df-sbc 3337
This theorem is referenced by:  sbc3an  3399  sbcabel  3425  csbuni  4279  csbmpt12  4787  csbxp  5087  difopab  5140  sbcfung  5617  sbcfng  5734  sbcfg  5735  fmptsnd  6094  f1od2  27370  sbcani  30437  sbccom2lem  30457  sbiota1  31243  onfrALTlem5  32795  onfrALTlem4  32796  bnj976  33316  bnj110  33396  bnj1040  33508
  Copyright terms: Public domain W3C validator