Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbcalgOLD Structured version   Visualization version   Unicode version

Theorem sbcalgOLD 36946
Description: Move universal quantifier in and out of class substitution. (Contributed by NM, 16-Jan-2004.) Obsolete as of 17-Aug-2018. Use sbcal 3328 instead. (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
sbcalgOLD  |-  ( A  e.  V  ->  ( [. A  /  y ]. A. x ph  <->  A. x [. A  /  y ]. ph ) )
Distinct variable groups:    x, A    x, y
Allowed substitution hints:    ph( x, y)    A( y)    V( x, y)

Proof of Theorem sbcalgOLD
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 3281 . 2  |-  ( z  =  A  ->  ( [ z  /  y ] A. x ph  <->  [. A  / 
y ]. A. x ph ) )
2 dfsbcq2 3281 . . 3  |-  ( z  =  A  ->  ( [ z  /  y ] ph  <->  [. A  /  y ]. ph ) )
32albidv 1777 . 2  |-  ( z  =  A  ->  ( A. x [ z  / 
y ] ph  <->  A. x [. A  /  y ]. ph ) )
4 sbal 2301 . 2  |-  ( [ z  /  y ] A. x ph  <->  A. x [ z  /  y ] ph )
51, 3, 4vtoclbg 3119 1  |-  ( A  e.  V  ->  ( [. A  /  y ]. A. x ph  <->  A. x [. A  /  y ]. ph ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189   A.wal 1452    = wceq 1454   [wsb 1807    e. wcel 1897   [.wsbc 3278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1679  ax-4 1692  ax-5 1768  ax-6 1815  ax-7 1861  ax-10 1925  ax-11 1930  ax-12 1943  ax-13 2101  ax-ext 2441
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-tru 1457  df-ex 1674  df-nf 1678  df-sb 1808  df-clab 2448  df-cleq 2454  df-clel 2457  df-v 3058  df-sbc 3279
This theorem is referenced by:  sbcssOLD  36950  trsbcVD  37313  sbcssgVD  37319
  Copyright terms: Public domain W3C validator