MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbc2ie Structured version   Unicode version

Theorem sbc2ie 3400
Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 16-Dec-2008.) (Revised by Mario Carneiro, 19-Dec-2013.)
Hypotheses
Ref Expression
sbc2ie.1  |-  A  e. 
_V
sbc2ie.2  |-  B  e. 
_V
sbc2ie.3  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph  <->  ps )
)
Assertion
Ref Expression
sbc2ie  |-  ( [. A  /  x ]. [. B  /  y ]. ph  <->  ps )
Distinct variable groups:    x, y, A    y, B    ps, x, y
Allowed substitution hints:    ph( x, y)    B( x)

Proof of Theorem sbc2ie
StepHypRef Expression
1 sbc2ie.1 . 2  |-  A  e. 
_V
2 sbc2ie.2 . 2  |-  B  e. 
_V
3 nfv 1678 . . 3  |-  F/ x ps
4 nfv 1678 . . 3  |-  F/ y ps
52nfth 1603 . . 3  |-  F/ x  B  e.  _V
6 sbc2ie.3 . . 3  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph  <->  ps )
)
73, 4, 5, 6sbc2iegf 3399 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( [. A  /  x ]. [. B  / 
y ]. ph  <->  ps )
)
81, 2, 7mp2an 672 1  |-  ( [. A  /  x ]. [. B  /  y ]. ph  <->  ps )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1374    e. wcel 1762   _Vcvv 3106   [.wsbc 3324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-10 1781  ax-12 1798  ax-13 1961  ax-ext 2438
This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-clab 2446  df-cleq 2452  df-clel 2455  df-v 3108  df-sbc 3325
This theorem is referenced by:  sbc3ie  3402  wrd2ind  12653  isprs  15406  isdrs  15410  istos  15511  isslmd  27393  rexrabdioph  30318  rmydioph  30549  rmxdioph  30551  expdiophlem2  30557
  Copyright terms: Public domain W3C validator