Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbc2ie Structured version   Unicode version

Theorem sbc2ie 3344
 Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 16-Dec-2008.) (Revised by Mario Carneiro, 19-Dec-2013.)
Hypotheses
Ref Expression
sbc2ie.1
sbc2ie.2
sbc2ie.3
Assertion
Ref Expression
sbc2ie
Distinct variable groups:   ,,   ,   ,,
Allowed substitution hints:   (,)   ()

Proof of Theorem sbc2ie
StepHypRef Expression
1 sbc2ie.1 . 2
2 sbc2ie.2 . 2
3 nfv 1728 . . 3
4 nfv 1728 . . 3
52nfth 1646 . . 3
6 sbc2ie.3 . . 3
73, 4, 5, 6sbc2iegf 3343 . 2
81, 2, 7mp2an 670 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 184   wa 367   wceq 1405   wcel 1842  cvv 3058  wsbc 3276 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-10 1861  ax-12 1878  ax-13 2026  ax-ext 2380 This theorem depends on definitions:  df-bi 185  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-clab 2388  df-cleq 2394  df-clel 2397  df-v 3060  df-sbc 3277 This theorem is referenced by:  sbc3ie  3346  wrd2ind  12757  isprs  15881  isdrs  15885  istos  15987  issrg  17477  isslmd  28183  rexrabdioph  35069  rmydioph  35298  rmxdioph  35300  expdiophlem2  35306
 Copyright terms: Public domain W3C validator