MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbc2ie Structured version   Unicode version

Theorem sbc2ie 3389
Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 16-Dec-2008.) (Revised by Mario Carneiro, 19-Dec-2013.)
Hypotheses
Ref Expression
sbc2ie.1  |-  A  e. 
_V
sbc2ie.2  |-  B  e. 
_V
sbc2ie.3  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph  <->  ps )
)
Assertion
Ref Expression
sbc2ie  |-  ( [. A  /  x ]. [. B  /  y ]. ph  <->  ps )
Distinct variable groups:    x, y, A    y, B    ps, x, y
Allowed substitution hints:    ph( x, y)    B( x)

Proof of Theorem sbc2ie
StepHypRef Expression
1 sbc2ie.1 . 2  |-  A  e. 
_V
2 sbc2ie.2 . 2  |-  B  e. 
_V
3 nfv 1694 . . 3  |-  F/ x ps
4 nfv 1694 . . 3  |-  F/ y ps
52nfth 1612 . . 3  |-  F/ x  B  e.  _V
6 sbc2ie.3 . . 3  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph  <->  ps )
)
73, 4, 5, 6sbc2iegf 3388 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( [. A  /  x ]. [. B  / 
y ]. ph  <->  ps )
)
81, 2, 7mp2an 672 1  |-  ( [. A  /  x ]. [. B  /  y ]. ph  <->  ps )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1383    e. wcel 1804   _Vcvv 3095   [.wsbc 3313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-10 1823  ax-12 1840  ax-13 1985  ax-ext 2421
This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-clab 2429  df-cleq 2435  df-clel 2438  df-v 3097  df-sbc 3314
This theorem is referenced by:  sbc3ie  3391  wrd2ind  12684  isprs  15537  isdrs  15541  istos  15643  issrg  17137  isslmd  27722  rexrabdioph  30702  rmydioph  30931  rmxdioph  30933  expdiophlem2  30939
  Copyright terms: Public domain W3C validator